Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,064 result(s) for "capsid"
Sort by:
Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A
The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.Cryo-EM structures of HIV-1 capsid in tubular assemblies feature intrinsically curved and asymmetric hexamers and provide insight into cyclophilin A binding.
Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure
The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly. Viral capsids need to protect the genome against harsh environmental conditions and cope with high internal pressure from the packaged genome. Here, the authors determine the structure of the thermostable phage P74-26 capsid at 2.8-Å resolution and identify features underlying enhanced capsid capacity and structural stability.
Architecture of African swine fever virus and implications for viral assembly
African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development.
Molecular mechanisms of the viral encoded chaperone 100K in capsid folding and assembly of adenovirus
Adenovirus is an icosahedral, non-enveloped DNA virus that infects humans and other animals. The capsid of adenovirus is mainly assembled by the major capsid protein hexon. Folding and assembly of hexon require the viral encoded chaperone 100K, of which the detailed structure and chaperoning mechanism remain unknown. Here, we report the cryoEM structure of 100K in complex with a pre-mature hexon trimer. The structure shows that 100K dimers bind to the bottom double jelly-roll domains of the pre-mature hexon, mainly through a hook-like domain and a loop extruded from the dimerization domain. Additionally, a groove formed at the dimerization interface of 100K accommodates the N-terminal fragment 49-53 of an adjacent hexon protomer. Mutagenesis studies indicate that the interactions at the jelly-roll domain and the N-terminus of hexon are all essential for the proper folding and assembly of hexon. 100K binds and stabilizes the partially folded hexon, preventing premature aggregation of hexon, promoting the folding of the hexon top insertion loops, and facilitating hexon trimerization. The assembly and folding of the adenovirus capsid protein hexon require the viral-encoded chaperone 100K. Here, the authors report the cryo-EM structure of 100K in complex with a partially folded hexon, providing insights into adenovirus capsid assembly.
Structure and mutagenesis reveal essential capsid protein interactions for KSHV replication
Cryo-electron microscopy reveals the structure of the Kaposi’s sarcoma-associated herpesvirus capsid, and experiments with polypeptides that mimic the smallest capsid protein demonstrate the potential for structure-derived insights to help to develop antiviral agents. KSHV structure gives clues to stop viral replication Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer that commonly affects patients with AIDS. KSHV is an enormous virus with nearly 3,000 proteins, which has made determining its structure challenging. Hong Zhou and colleagues used cryo-electron microscopy to solve the structure of KSHV's capsid to 4.2 Å resolution. Their atomic model, corroborated by mutagenesis analysis, reveals molecular interactions that are important for stabilizing the capsid. The authors show experimentally that these interactions can be exploited to inhibit virus replication. Kaposi’s sarcoma-associated herpesvirus (KSHV) causes Kaposi’s sarcoma 1 , 2 , a cancer that commonly affects patients with AIDS 3 and which is endemic in sub-Saharan Africa 4 . The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses 5 . Capsid assembly and genome packaging of herpesviruses are prone to interruption 6 , 7 , 8 , 9 and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids—comprising nearly 3,000 proteins and over 1,300 Å in diameter—present a formidable challenge to atomic structure determination 10 and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP–MCP interaction—including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain—define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.
Structure and architecture of immature and mature murine leukemia virus capsids
Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein–protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.
Structural Capsidomics of Single-Stranded DNA Viruses
Single-stranded DNA (ssDNA) viruses are a diverse group of pathogens with broad host range, including bacteria, archaea, protists, fungi, plants, invertebrates, and vertebrates. Their small compact genomes have evolved to encode multiple proteins. This review focuses on the structure and functional diversity of the icosahedral capsids across the ssDNA viruses. To date, X-ray crystallography and cryo-electron microscopy structural studies have provided detailed capsid architectures for 8 of the 35 ssDNA virus families, illustrating variations in assembly mechanisms, symmetry, and structural adaptations of the capsid. However, common features include the conserved jelly-roll motif of the capsid protein and strategies for genome packaging, also showing evolutionary convergence. The ever-increasing availability of genomic sequences of ssDNA viruses and predictive protein modeling programs, such as using AlphaFold, allows for the extension of structural insights to the less-characterized families. Therefore, this review is a comparative analysis of the icosahedral ssDNA virus families and how the capsid proteins are arranged with different tessellations to form icosahedral spheres. It summarizes the current knowledge, emphasizing gaps in the structural characterization of the ssDNA capsidome, and it underscores the importance of continued exploration to understand the molecular underpinnings of capsid function and evolution. These insights have implications for virology, molecular biology, and therapeutic applications.
Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses
The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.
HIV-1 capsid stability and reverse transcription are finely balanced to minimize sensing of reverse transcription products via the cGAS-STING pathway
In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.
Aviadenovirus structure: A highly thermostable capsid in the absence of stabilizing proteins
High-resolution structural studies have mainly focused on two out of the six adenovirus genera: mastadenoviruses and atadenoviruses. Here we report the high-resolution structure of an aviadenovirus, the poultry pathogen fowl adenovirus serotype 4 (FAdV-C4). FAdV-C4 virions are highly thermostable, despite lacking minor coat and core proteins shown to stabilize the mast- and atadenovirus particles, having no genus-specific cementing proteins, and packaging a 25% longer genome. Unique structural features of the FAdV-C4 hexon include a large insertion at the trimer equatorial region, and a long N-terminal tail. Protein IIIa conformation is closer to atadenoviruses than to mastadenoviruses, while protein VIII diverges from all previously reported structures. We interpret these differences in light of adenovirus evolution. Finally, we discuss the possible role of core composition in determining capsid stability properties. These results enlarge our view on the structural diversity of adenoviruses, and provide useful information to counteract fowl pathogens or use non-human adenoviruses as vectors.