Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
8,615
result(s) for
"carbon sinks"
Sort by:
Carbon capture and storage : technologies, policies, economics, and implementation strategies
by
الفتاح، سعود م. author
,
البرغوثي، مراد ف. author
,
دبوسي، بشير أ. author
in
Geological carbon sequestration
,
Carbon dioxide Environmental aspects
,
Air quality management
2012
This book focuses on issues related to a suite of technologies known as \"Carbon Capture and Storage (CCS),\" which can be used to capture and store underground large amounts of industrial CO2 emissions. It addresses how CCS should work, as well as where, why, and how these technologies should be deployed, emphasizing the gaps to be filled in terms of research and development, technology, regulations, economics, and public acceptance.
Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy
by
Yue, Chao
,
Piao, Shilong
,
Guo, Zhengtang
in
Afforestation
,
Anthropogenic factors
,
Biological fertilization
2022
The Chinese government has made a strategic decision to reach ‘carbon neutrality’ before 2060. China’s terrestrial ecosystem carbon sink is currently offsetting 7–15% of national anthropogenic emissions and has received widespread attention regarding its role in the ‘carbon neutrality’ strategy. We provide perspectives on this question by inferring from the fundamental principles of terrestrial ecosystem carbon cycles. We first elucidate the basic ecological theory that, over the long-term succession of ecosystem without regenerative disturbances, the carbon sink of a given ecosystem will inevitably approach zero as the ecosystem reaches its equilibrium state or climax. In this sense, we argue that the currently observed global terrestrial carbon sink largely emerges from the processes of carbon uptake and release of ecosystem responding to environmental changes and, as such, the carbon sink is never an intrinsic ecosystem function. We further elaborate on the long-term effects of atmospheric CO
2
changes and afforestation on China’s terrestrial carbon sink: the enhancement of the terrestrial carbon sink by the CO
2
fertilization effect will diminish as the growth of the atmospheric CO
2
slows down, or completely stops, depending on international efforts to combat climate change, and carbon sinks induced by ecological engineering, such as afforestation, will also decline as forest ecosystems become mature and reach their late-successional stage. We conclude that terrestrial ecosystems have nonetheless an important role to play to gain time for industrial emission reduction during the implementation of the ‘carbon neutrality’ strategy. In addition, science-based ecological engineering measures including afforestation and forest management could be used to elongate the time of ecosystem carbon sink service. We propose that the terrestrial carbon sink pathway should be optimized, by addressing the questions of ‘when’ and ‘where’ to plan afforestation projects, in order to effectively strengthen the terrestrial ecosystem carbon sink and maximize its contribution to the realization of the ‘carbon neutrality’ strategy.
Journal Article
Role of forest regrowth in global carbon sink dynamics
2019
Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global compilation of forest age observations, combined with a terrestrial biosphere model with explicit modeling of forest regrowth, to partition the global forest carbon sink between old-growth and regrowth stands over the period 1981–2010. For 2001–2010 we find a carbon sink of 0.85 (0.66–0.96) Pg year−1 located in intact old-growth forest, primarily in the moist tropics and boreal Siberia, and 1.30 (1.03–1.96) Pg year−1 located in stands regrowing after past disturbance. Approaching half of the sink in regrowth stands would have occurred from demographic changes alone, in the absence of other environmental changes. These age-constrained results show consistency with those simulated using an ensemble of demographically-enabled terrestrial biosphere models following an independent reconstruction of historical land use and management. We estimate that forests will accumulate an additional 69 (44–131) Pg C in live biomass from changes in demography alone if natural disturbances, wood harvest, and reforestation continue at rates comparable to those during 1981–2010. Our results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography. They also imply that a large portion of the current terrestrial carbon sink is strictly transient in nature.
Journal Article
Estimation of global karst carbon sink from 1950s to 2050s using response surface methodology
2024
For the estimation of global karst carbon sink, a few conventional methods usually require the parameters that are difficult to measure, resulting in the big cost. Moreover, under the constraints of incomplete and timeliness issues in the collection of data over a large region, it has remained a challenge for these methods to study global karst carbon sink. Therefore, this paper proposes estimating the global karst carbon sink, and analyzing the suitability of the response surface methodology and the fluctuating variation of karst carbon sink in global karst regions from 1951 to 2050. This paper shows that the proposed method can reduce the time of numerical calculation and is suitable for application in global weathering models; The global karst carbon sink in the future changes not only displays an upward trend but also exposures its fluctuating trend largely. This fluctuation is probably due to global warming.
Journal Article
The impacts of climate extremes on the terrestrial carbon cycle: A review
2019
The increased frequency of climate extremes in recent years has profoundly affected terrestrial ecosystem functions and the welfare of human society. The carbon cycle is a key process of terrestrial ecosystem changes. Therefore, a better understanding and assessment of the impacts of climate extremes on the terrestrial carbon cycle could provide an important scientific basis to facilitate the mitigation and adaption of our society to climate change. In this paper, we systematically review the impacts of climate extremes (e.g. drought, extreme precipitation, extreme hot and extreme cold) on terrestrial ecosystems and their mechanisms. Existing studies have suggested that drought is one of the most important stressors on the terrestrial carbon sink, and that it can inhibit both ecosystem productivity and respiration. Because ecosystem productivity is usually more sensitive to drought than respiration, drought can significantly reduce the strength of terrestrial ecosystem carbon sinks and even turn them into carbon sources. Large inter-model variations have been found in the simulations of drought-induced changes in the carbon cycle, suggesting the existence of a large gap in current understanding of the mechanisms behind the responses of ecosystem carbon balance to drought, especially for tropical vegetation. The effects of extreme precipitation on the carbon cycle vary across different regions. In general, extreme precipitation enhances carbon accumulation in arid ecosystems, but restrains carbon sequestration in moist ecosystems. However, current knowledge on the indirect effects of extreme precipitation on the carbon cycle through regulating processes such as soil carbon lateral transportation and nutrient loss is still limited. This knowledge gap has caused large uncertainties in assessing the total carbon cycle impact of extreme precipitation. Extreme hot and extreme cold can affect the terrestrial carbon cycle through various ecosystem processes. Note that the severity of such climate extremes depends greatly on their timing, which needs to be investigated thoroughly in future studies. In light of current knowledge and gaps in the understanding of how extreme climates affect the terrestrial carbon cycle, we strongly recommend that future studies should place more attention on the long-term impacts and on the driving mechanisms at different time scales. Studies based on multi-source data, methods and across multiple spatial-temporal scales, are also necessary to better characterize the response of terrestrial ecosystems to climate extremes.
Journal Article
Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget
by
Séférian, Roland
,
Chau, Thi Tuyet Trang
,
Zeising, Moritz
in
anthropogenic CO2
,
Anthropogenic factors
,
Biogeochemistry
2020
Based on the 2019 assessment of the Global Carbon Project, the ocean took up on average, 2.5+/-0.6PgCyr-1 or 23+/-5% of the total anthropogenic CO2 emissions over the decade 2009-2018. This sink estimate is based on global ocean biogeochemical models (GOBMs) and is compared to data-products based on surface ocean pCO2 (partial pressure of CO2) observations accounting for the outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing the simulated pCO2 to observations. The simulations are well suited for quantifying the global ocean carbon sink on the time-scale of the annual mean and its multi-decadal trend (RMSE <20 μatm), as well as on the time-scale of multi-year variability (RMSE <10 μatm), despite the large model-data mismatch on the seasonal time-scale (RMSE of 20-80 μatm). Biases in GOBMs have a small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to improve the regional budgets and model-data comparison. Accounting for non-mapped areas in the data-products reduces their spread as measured by the standard deviation by a third. There is growing evidence and consistency among methods with regard to the patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On average, the GOBMs reveal less variations in the sink than the data-based products. Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are discrepancies between the resulting sink estimate from GOBMs and data-products. These discrepancies are within the uncertainty of the river flux adjustment, increase over time, and largely stem from the Southern Ocean. Progress in our understanding of the global ocean carbon sink necessitates significant advancement in modelling and observing the Southern Ocean including (i) a game-changing increase in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river flux adjustment.
Journal Article
Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: considering carbon sink effect
by
Zhao, Minjuan
,
Cui, Yu
,
Deng, Yue
in
Agriculture
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2021
The current study aims to analyze the regional differences and spatiotemporal dynamic evolution of carbon emission intensity (CEI) and carbon emission per capita (CEPC) of planting industry with consideration of carbon sink effect. The results indicate that: (i) The CEI and CEPC of China’s planting industry present significant non-equilibrium distribution characteristic during the investigate period, provinces with high CEI are mainly distributed in major agricultural provinces, while high CEPC provinces are mainly located in northeast and individual central provinces with large planting industry. (ii) Inter-regional difference is the principal course of the total differences, the CEI Theil index demonstrates gradient decreasing pattern of “western > central > eastern > northeast,” the contribution rate of CEI Theil index shows “northeast > eastern > central > western,” the CEPC Theil index shows the spatial pattern of “northeast > central > western > eastern,” and the contribution rate of CEPC Theil index presents the spatial pattern of “eastern > central > western > northeast.” (iii) The dynamic evolution of CEI and CEPC curve presents polarization or multipolar differential phenomenon accompanies with distinct gradient characteristics, the regional difference of agglomeration level in CEI is gradually narrowing, while the CEPC gradually expanding and the dispersion level is increasing, which implies the “intra-regional convergence and inter-regional divergence.” Consequently, differential carbon reduction policies have been put forward according to the study findings.
Journal Article
Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review
by
Saleem, Yasmeen
,
Fahim, Ramy Amer
,
Osman, Ahmed I
in
Agronomy
,
Anaerobic digestion
,
Anaerobic treatment
2022
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Journal Article
Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests
by
LeMoine, J.
,
Wickings, K.
,
Bowden, R.
in
Accumulation
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2014
The terrestrial biosphere sequesters up to a third of annual anthropogenic carbon dioxide emissions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen deposition contributes by enhancing tree productivity and promoting carbon storage in tree biomass. Forest soils also represent an important, but understudied carbon sink. Here, we examine the contribution of trees versus soil to total ecosystem carbon storage in a temperate forest and investigate the mechanisms by which soils accumulate carbon in response to two decades of elevated nitrogen inputs. We find that nitrogen-induced soil carbon accumulation is of equal or greater magnitude to carbon stored in trees, with the degree of response being dependent on stand type (hardwood versus pine) and level of N addition. Nitrogen enrichment resulted in a shift in organic matter chemistry and the microbial community such that unfertilized soils had a higher relative abundance of fungi and lipid, phenolic, and N-bearing compounds; whereas, N-amended plots were associated with reduced fungal biomass and activity and higher rates of lignin accumulation. We conclude that soil carbon accumulation in response to N enrichment was largely due to a suppression of organic matter decomposition rather than enhanced carbon inputs to soil via litter fall and root production.
Journal Article
Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development—An Overview
2022
On 15 March 2021, Chinese President Xi Jinping pointed out that “achieving carbon peak and carbon neutrality is a broad and profound economic and social systemic change” and called for “putting energy and resources conservation in the first place”. Natural resources are the material basis, space carrier and energy source of high-quality development. The source of carbon emissions is resource utilization, and carbon reduction and removal also depend on resources. The improvement of carbon sink capacity is inseparable from natural resources. To achieve the goal of “double carbon”, it is necessary to consolidate the carbon sink capacity of the ecosystem, as well as enhancing its carbon sink increment. Among natural resources, forest carbon sinks, soil carbon sinks and karst carbon sinks have significant emission reduction potential and cost advantages, representing important means to deal with climate change. This paper reviews the relevant research results at home and abroad, summarizes the carbon sink estimation, carbon sink potential, carbon sink influencing factors, ecological compensation mechanism and other aspects, analyzes the path selection of establishing carbon sink green development, and puts forward corresponding policies and suggestions, providing a theoretical reference for the achievement of the carbon neutrality goal in the field of natural resources in China.
Journal Article