Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,193
result(s) for
"cattle breeds"
Sort by:
The herds shot round the world : native breeds and the British empire, 1800-1900
\"As Britain industrialized in the early nineteenth century, animal breeders faced the need to convert livestock into products while maintaining the distinctive character of their breeds. Thus they transformed cattle and sheep adapted to regional environments into bulky, quick-fattening beasts. Exploring the environmental and economic ramifications of imperial expansion on colonial environments and production practices, Rebecca J. H. Woods traces how global physiological and ecological diversity eroded under the technological, economic, and cultural system that grew up around the production of livestock by the British Empire. Attending to the relationship between type and place and what it means to call a particular breed of livestock 'native,' Woods highlights the inherent tension between consumer expectations in the metropole and the ecological reality at the periphery.\"-- Provided by publisher.
Human-Mediated Introgression of Haplotypes in a Modern Dairy Cattle Breed
by
Sahana, Goutam
,
Calus, Mario P L
,
Lund, Mogens Sandø
in
Adaptive systems
,
Animals
,
Animals, Domestic - genetics
2018
Domestic animals provide a robust model system to understand complex evolutionary processes and their genomic consequences. Zhang et al. use full re-sequenced genomes of modern dairy cattle to identify haplotypes in the genomes of an admixed...
Domestic animals can serve as model systems of adaptive introgression and their genomic signatures. In part, their usefulness as model systems is due to their well-known histories. Different breeding strategies such as introgression and artificial selection have generated numerous desirable phenotypes and superior performance in domestic animals. The modern Danish Red Dairy Cattle is studied as an example of an introgressed population. It originates from crossing the traditional Danish Red Dairy Cattle with the Holstein and Brown Swiss breeds, both known for high milk production. This crossing happened, among other things due to changes in the production system, to raise milk production and overall performance. The genomes of modern Danish Red Dairy Cattle are heavily influenced by regions introgressed from the Holstein and Brown Swiss breeds and under subsequent selection in the admixed population. The introgressed proportion of the genome was found to be highly variable across the genome. Haplotypes introgressed from Holstein and Brown Swiss contained or overlapped known genes affecting milk production, as well as protein and fat content (CD14, ZNF215, BCL2L12, and THRSP for Holstein origin and ITPR2, BCAT1, LAP3, and MED28 for Brown Swiss origin). Genomic regions with high introgression signals also contained genes and enriched QTL associated with calving traits, body confirmation, feed efficiency, carcass, and fertility traits. These introgressed signals with relative identity-by-descent scores larger than the median showing Holstein or Brown Swiss introgression are mostly significantly correlated with the corresponding test statistics from signatures of selection analyses in modern Danish Red Dairy Cattle. Meanwhile, the putative significant introgressed signals have a significant dependency with the putative significant signals from signatures of selection analyses. Artificial selection has played an important role in the genomic footprints of introgression in the genome of modern Danish Red Dairy Cattle. Our study on a modern cattle breed contributes to an understanding of genomic consequences of selective introgression by demonstrating the extent to which adaptive effects contribute to shape the specific genomic consequences of introgression.
Journal Article
Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds
2011
The objectives of the study were to evaluate allelic frequencies and to test the association of polymorphisms in the calpastatin (CAST) and μ-calpain (CAPN1) genes with meat tenderness in 3 French beef breeds. A total of 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine purebred young bulls were genotyped for 3 SNP in the CAST gene and 4 SNP in the CAPN1 gene. Two of these markers, 1 in each gene, can be found in Australian or American commercial genetic tests. Others have previously been reported in American studies or are newly evidenced SNP. The quantitative traits studied were Warner-Bratzler shear force and a tenderness score evaluated by trained sensory panels. All the SNP were informative in the 3 breeds. Associations of individual markers or haplotypes with traits were analyzed. The results differed in the 3 breeds. The G allele of a CAST marker (position 97574679 on Btau4.0) was found to exert a significant effect on the shear force (+0.18 phenotypic SD; RSD) and tenderness score (-0.22 RSD) in the Blonde d'Aquitaine breed. In the same breed, this marker was associated with another CAST SNP (position 97576054 on Btau4.0) such that the GA haplotype appeared to be associated with tougher meat. Two CAPN1 markers (positions 45221250 and 45241089 on Btau4.0) had a significant effect on both traits in the Charolais breed (from |0.11| to |0.25| RSD). In the same breed, these markers were associated with another CAPN1 SNP (position 45219395 on Btau4.0) such that the ACA and AGG haplotypes appeared to be associated with a tender meat and a tougher meat, respectively. Consequently, the present results indicate that the effects of the markers studied are breed-specific and cannot be extended to all Bos taurus breeds. Further studies are also required to identify other more appropriate markers for French beef breeds.
Journal Article
origin of European cattle: evidence from modern and ancient DNA
by
Ferrand, N
,
Vernesi, C
,
Conti, S
in
ancient mitochondrial DNA
,
Animal domestication
,
Animal genetics
2006
Cattle domestication from wild aurochsen was among the most important innovations during the Neolithic agricultural revolution. The available genetic and archaeological evidence points to at least two major sites of domestication in India and in the Near East, where zebu and the taurine breeds would have emerged independently. Under this hypothesis, all present-day European breeds would be descended from cattle domesticated in the Near East and subsequently spread during the diffusion of herding and farming lifestyles. We present here previously undescribed genetic evidence in contrast with this view, based on mtDNA sequences from five Italian aurochsen dated between 7,000 and 17,000 years B.P. and > 1,000 modern cattle from 51 breeds. Our data are compatible with local domestication events in Europe and support at least some levels of introgression from the aurochs in Italy. The distribution of genetic variation in modern cattle suggest also that different south European breeds were affected by introductions from northern Africa. If so, the European cattle may represent a more variable and valuable genetic resource than previously realized, and previous simple hypotheses regarding the domestication process and the diffusion of selected breeds should be revised.
Journal Article
Selection and Drift: A Comparison between Historic and Recent Dutch Friesian Cattle and Recent Holstein Friesian Using WGS Data
2022
Over the last century, genetic diversity in many cattle breeds has been affected by the replacement of traditional local breeds with just a few milk-producing breeds. In the Netherlands, the local Dutch Friesian breed (DF) has gradually been replaced by the Holstein Friesian breed (HF). The objective of this study is to investigate genomewide genetic diversity between a group of historically and recently used DF bulls and a group of recently used HF bulls. Genetic material of 12 historic (hDF), 12 recent DF bulls (rDF), and 12 recent HF bulls (rHF) in the Netherlands was sequenced. Based on the genomic information, different parameters—e.g., allele frequencies, inbreeding coefficient, and runs of homozygosity (ROH)—were calculated. Our findings showed that a large amount of diversity is shared between the three groups, but each of them has a unique genetic identity (12% of the single nucleotide polymorphisms were group-specific). The rDF is slightly more diverged from rHF than hDF. The inbreeding coefficient based on runs of homozygosity (Froh) was higher for rDF (0.24) than for hDF (0.17) or rHF (0.13). Our results also displayed the presence of several genomic regions that differentiated between the groups. In addition, thirteen, forty-five, and six ROH islands were identified in hDF, rDF, and rHF, respectively. The genetic diversity of the DF breed reduced over time, but this did not lead to higher inbreeding levels—especially, inbreeding due to recent ancestors was not increased.
Journal Article
Effects of Breed, Feeding System, and Parity on Udder Health and Milking Characteristics
2007
The objective of this study was to quantify differences in udder health and milking characteristics among the Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde×Holstein-Friesian (MBX), and Normande×Holstein-Friesian (NMX) genotypes, while considering the effect of feeding system and parity. A total of 749 lactations were available for inclusion in the analysis from 309 cows in 1 research herd over 5 yr. Somatic cell score (SCS; i.e., natural logarithm of somatic cell count) was used as an indicator of udder health. Milking duration (seconds/d) was defined as the sum of the milking duration in the a.m. and milking duration in the p.m. Average daily milk flow (AMF; kg/min) was defined as total daily milk yield divided by total daily milking duration. Peak milk flow (kg/min) was defined as the maximum rate of milk flow achieved in the daily milking process. The SCS of the NRF (10.31 units) and MB (10.47 units) breeds was less than that of the HF (10.96 SCS units), whereas that of the NM (10.88 SCS units), MBX (10.93 SCS units), and NMX (10.84 SCS units) breeds was similar to that of the HF. The MBX and NMX had the greatest AMF (1.56 and 1.54 kg/min, respectively) and the NM had the lowest (1.33 kg/min). Animals offered a high concentrate diet had greater AMF, peak milk flow, and milking duration. The differences expressed by the divergent breeds may reflect differences in the past breeding goals among the breeds, namely the inclusion of traits aimed at maintaining or improving udder health.
Journal Article
Genetic Diversity of Historical and Modern Populations of Russian Cattle Breeds Revealed by Microsatellite Analysis
by
Mishina, Arina I.
,
Dotsev, Arsen V.
,
Kharzinova, Veronika R.
in
19th century
,
20th century
,
Alleles
2020
Analysis of ancient and historical DNA has great potential to trace the genetic diversity of local cattle populations during their centuries-long development. Forty-nine specimens representing five cattle breeds (Kholmogor, Yaroslavl, Great Russian, Novgorod, and Holland), dated from the end of the 19th century to the first half of the 20th century, were genotyped for nine polymorphic microsatellite loci. Using a multiple-tube approach, we determined the consensus genotypes of all samples/loci analysed. Amplification errors, including allelic drop-out (ADO) and false alleles (FA), occurred with an average frequency of 2.35% and 0.79%, respectively. A significant effect of allelic length on ADO rate (r2 = 0.620, p = 0.05) was shown. We did not observe significant differences in genetic diversity among historical samples and modern representatives of Kholmogor and Yaroslavl breeds. The unbiased expected heterozygosity values were 0.726–0.774 and 0.708–0.739; the allelic richness values were 2.716–2.893 and 2.661–2.758 for the historical and modern samples, respectively. Analyses of FST and Jost’s D genetic distances, and the results of STRUCTURE clustering, showed the maintenance of a part of historical components in the modern populations of Kholmogor and Yaroslavl cattle. Our study contributes to the conservation of biodiversity in the local Russian genetic resources of cattle.
Journal Article
Comparison of rumen contents’ characteristics in Nguni and Bonsmara cows raised under two different grazing systems
2024
Objective: This study aimed to evaluate rumen fermentation parameters influenced by both the graz¬ing system and breed.
Materials and Methods: A 2 × 2 factorial design was employed, involving 40 cows with matched age, parity, and physiological status. The cows were evenly divided between Bonsmara and Nguni breeds, as well as communal and commercial grazing systems. Rumen fluid samples were collected and analyzed for parameters including ammonia-nitrogen (NH3-N), pH, temperature, and volatile fatty acids (VFAs).
Results: Nguni cows exhibited significantly higher ruminal NH3-N levels (p < 0.05) compared to Bonsmara, ranging from 69.05 to 96.78 mg/l. Commercial grazing demonstrated significantly higher NH3-N concentrations (p < 0.05) than communal grazing. Ruminal pH, temperature, total VFAs, and specific VFAs (Iso-butyrate, valeric, and iso-valeric) did not show significant differences (p > 0.05). However, total VFAs were slightly lower in communal grazing (78.87 mmol/l) than in commercial grazing (89.80 mmol/l). Acetate, propionate, butyrate, and the acetate to propionate ratio did not display significant differences (p > 0.05) between breeds but varied between grazing systems. Communal systems had higher acetate and acetate to propionate ratio (p < 0.05), while commercial systems showed higher propionate and butyrate levels (p < 0.05).
Conclusion: Grazing conditions significantly influenced rumen fermentation parameters, irrespec¬tive of breed. Further research is necessary to explore the relationship between forage conditions, diversity, and rumen fermentation within different grazing systems.
Journal Article
two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds
2010
The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were studied in 3 French beef breeds in the program Qualvigène. This work was done with 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine young bulls from, respectively, 48, 36, and 30 sires and slaughtered from 2004 to 2006. In addition to the usual carcass traits recorded at slaughter (e.g., carcass yield, muscle score), carcass composition was estimated by weighing internal fat and dissecting the 6th rib. The muscle characteristic traits analyzed were lipid and collagen contents, muscle fiber section area, and pH. Regarding meat quality, sensory qualities of meat samples were evaluated by a taste panel, and Warner-Bratzler shear force was measured. Deoxyribonucleic acid was extracted from the blood samples of all calves, the blood samples of 78% of the dams, and the blood or semen samples of all the sires. Genotypes were determined for 2 disruptive mutations, Q204X and nt821. Analyses were conducted by breed. The superiority of carcass traits of calves carrying one copy of the mutated allele (Q204X or nt821) over noncarrier animals was approximately +1 SD in the Charolais and Limousin breeds but was not significant in the Blonde d'Aquitaine. In the Charolais breed, for which the frequency was the greatest (7%), young bulls carrying the Q204X mutation presented a carcass with less fat, less intramuscular fat and collagen contents, and a clearer and more tender meat than those of homozygous-normal cattle. The meat of these animals also had slightly less flavor. Also in the Charolais breed, 13 of 48 sires were heterozygous. For each sire, the substitution effect of the wild allele by the mutant allele was approximately +1 SD for carcass conformation and yield, showing that the estimate of the substitution effect was independent of family structure, as it ought to be for a causal mutation. These results illustrate the challenge of using genetic tests to detect animals with the genetic potential for greater grades of carcasses and meat quality.
Journal Article
Intrabreed and interbreed variation of the BOLA-DRB3.2 gene in the Kostroma and Yaroslavl indigenous Russian cattle breeds
by
Lazebnaya, Irina V
,
Lazebny, Oleg E
,
Perchun, Aleksey V
in
Alleles
,
Bayesian analysis
,
Bovine leukosis
2020
Intrabreed and interbreed variation of BOLA-DRB3 exon 2 (BOLA-DRB3.2) was for the first time studied in the Kostroma and Yaroslavl cattle breeds by PCR-RFLP. These breeds are among the best Russian breeds and were developed as dairy–beef and dairy cattle, respectively. Twenty-nine alleles were observed in five Kostroma samples, and 14 of them proved unique in comparison with two Yaroslavl samples, in which 25 alleles were detected, and 10 of them were unique. The total frequency of bovine leukemia virus (BLV) resistance alleles (*11, *23, and *28) was 23.2% in the Kostroma, while the total frequency of BLV susceptibility alleles (*8, *16, *22, *24) was low, 8.4%. The frequencies were 25.8 and 30.1%, respectively, in Yaroslavl cattle. Testing Hardy–Weinberg equilibrium revealed a significant deficit of heterozygotes: the observed (Ho) and expected (He) heterozygosities were, respectively, 0.734 and 0.859 in Kostroma cattle and 0.613 and 0.886 in Yaroslavl cattle. The intrabreed differentiation (FST) in the Kostroma (4.5%, P = 0.001) was substantially higher than in the Yaroslavl (0.5%, P = 0.158), between the two breeds was 8.2% (P = 0.001). The Bayesian clustering approach showed an intrabreed structure for each of the breeds, with the most probable number of clusters being 2 in the Kostroma and 3 in the Yaroslavl. The structure observed in the Kostroma remained the same when the breed was analyzed together with six additional breeds. Our data provide important clues toward the understanding of the genetic structure of indigenous breeds.
Journal Article