Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26,681 result(s) for "cell count"
Sort by:
An Official American Thoracic Society Clinical Practice Guideline: The Clinical Utility of Bronchoalveolar Lavage Cellular Analysis in Interstitial Lung Disease
The clinical utility of bronchoalveolar lavage fluid (BAL) cell analysis for the diagnosis and management of patients with interstitial lung disease (ILD) has been a subject of debate and controversy. The American Thoracic Society (ATS) sponsored a committee of international experts to examine all relevant literature on BAL in ILD and provide recommendations concerning the use of BAL in the diagnosis and management of patients with suspected ILD. To provide recommendations for (1) the performance and processing of BAL and (2) the interpretation of BAL nucleated immune cell patterns and other BAL characteristics in patients with suspected ILD. A pragmatic systematic review was performed to identify unique citations related to BAL in patients with ILD that were published between 1970 and 2006. The search was updated during the guideline development process to include published literature through March 2011. This is the evidence upon which the committee's conclusions and recommendations are based. Recommendations for the performance and processing of BAL, as well as the interpretation of BAL findings, were formulated by the committee. When used in conjunction with comprehensive clinical information and adequate thoracic imaging such as high-resolution computed tomography of the thorax, BAL cell patterns and other characteristics frequently provide useful information for the diagnostic evaluation of patients with suspected ILD.
Complete blood count reference intervals from a healthy adult urban population in Kenya
There are racial, ethnic and geographical differences in complete blood count (CBC) reference intervals (RIs) and therefore it is necessary to establish RIs that are population specific. Several studies have been carried out in Africa to derive CBC RIs but many were not conducted with the rigor recommended for RI studies hence limiting the adoption and generalizability of the results. By use of a Beckman Coulter ACT 5 DIFF CP analyser, we measured CBC parameters in samples collected from 528 healthy black African volunteers in a largely urban population. The latent abnormal values exclusion (LAVE) method was used for secondary exclusion of individuals who may have had sub-clinical diseases. The RIs were derived by both parametric and non-parametric methods with and without LAVE for comparative purposes. Haemoglobin (Hb) levels were lower while platelet counts were higher in females across the 4 age stratifications. The lower limits for Hb and red blood cell parameters significantly increased after applying the LAVE method which eliminated individuals with latent anemia and inflammation. We adopted RIs by parametric method because 90% confidence intervals of the RI limits were invariably narrower than those by the non-parametric method. The male and female RIs for Hb after applying the LAVE method were 14.5-18.7 g/dL and 12.0-16.5 g/dL respectively while the platelet count RIs were 133-356 and 152-443 x10(3) per μL respectively. Consistent with other studies from Sub-Saharan Africa, Hb and neutrophil counts were lower than Caucasian values. Our finding of higher Hb and lower eosinophil counts compared to other studies conducted in rural Kenya most likely reflects the strict recruitment criteria and healthier reference population after secondary exclusion of individuals with possible sub-clinical diseases.
A comparative study of blood cell count in four automated hematology analyzers: An evaluation of the impact of preanalytical factors
Differential white blood cell counts are frequently used in diagnosis, patient stratification, and treatment selection to optimize therapy responses. Referral laboratories are often used but challenged with use of different hematology platforms, variable blood shipping times and storage conditions, and the different sensitivities of specific cell types. To extend the scientific literature and knowledge on the temporal commutability of blood samples between hematology analyzers, we performed a comparative ex-vivo study using four of the most utilized commercial platforms, focusing on the assessment of eosinophils given its importance in asthma management. Whole blood from healthy volunteers with and without atopy (n = 6+6) and participants with eosinophilic asthma (n = 6) were stored under different conditions (at 4, 20, 30, and 37°C, with or without agitation) and analyzed at different time points (3, 6, 24, 48 and 72h post-sampling) in parallel on the Abbott CELL-DYN Sapphire, Beckman Coulter DxH900, Siemens ADVIA 2120i and Sysmex XN-1000V. In the same blood samples, eosinophil-derived neurotoxin (EDN), eosinophil activation and death markers were analyzed. All platforms gave comparable measurements of cell differentials on fresh blood within the same day of sampling. However, by 24 hours, significant temporal and temperature-dependent differences were observed, most markedly for eosinophils. None of the platforms performed perfectly across all temperatures tested during the 72 hours, showing that handling conditions should be optimized depending on the cell type of interest and the hematology analyzer. Neither disease status (healthy vs. asthma) nor agitation of the sample affected the cell quantification result or EDN release. The eosinophil activation markers measured by flow cytometry increased with time, were influenced by temperature, and were higher in those with asthma versus healthy participants. In conclusion, hematology analyzer, time window from sampling until analysis, and temperature conditions must be considered when analyzing blood cell differentials, particularly for eosinophils, via central labs to obtain counts comparable to the values obtained in freshly sampled blood.
A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study
COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration, and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723–0.781) increasing to 0.875 (95% CI 0.806–0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients.
Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation
Backgound Alveolar type 2 (AT2) cells play important roles in maintaining adult lung homeostasis. AT2 cells isolated from the lung have revealed the cell-specific functions of AT2 cells. Comprehensive molecular and transcriptional profiling of purified AT2 cells would be helpful for elucidating the underlying mechanisms of their cell-specific functions. To enable the further purification of AT2 cells, we aimed to discriminate AT2 cells from non-AT2 lung epithelial cells based on surface antigen expression via fluorescence activated cell sorting (FACS). Methods Single-cell suspensions obtained from enzymatically digested murine lungs were labeled for surface antigens (CD45/CD31/epithelial cell adhesion molecule (EpCAM)/ major histocompatibility complex class II (MHCII)) and for pro-surfactant protein C (proSP-C), followed by FACS analysis for surface antigen expression on AT2 cells. AT2 cells were sorted, and purity was evaluated by immunofluorescence and FACS. This newly developed strategy for AT2 cell isolation was validated in different strains and ages of mice, as well as in a lung injury model. Results FACS analysis revealed that EpCAM + epithelial cells existed in 3 subpopulations based on EpCAM and MHCII expression: EpCAM med MHCII + cells (Population1:P1), EpCAM hi MHCII − cells (P2), and EpCAM low MHCII − cells (P3). proSP-C + cells were enriched in P1 cells, and the purity values of the sorted AT2 cells in P1 were 99.0% by immunofluorescence analysis and 98.0% by FACS analysis. P2 cells were mainly composed of ciliated cells and P3 cells were composed of AT1 cells, respectively, based on the gene expression analysis and immunofluorescence. EpCAM and MHCII expression levels were not significantly altered in different strains or ages of mice or following lipopolysaccharide (LPS)-induced lung injury. Conclusions We successfully classified murine distal lung epithelial cells based on EpCAM and MHCII expression. The discrimination of AT2 cells from non-AT2 epithelial cells resulted in the isolation of pure AT2 cells. Highly pure AT2 cells will provide accurate and deeper insights into the cell-specific mechanisms of alveolar homeostasis.
Live single cell mass spectrometry reveals cancer‐specific metabolic profiles of circulating tumor cells
Recently, there has been increased attention on the analysis of circulating tumor cells (CTCs), also known as liquid biopsy, owing to its potential benefits in cancer diagnosis and treatment. Circulating tumor cells are released from primary tumor lesions into the blood stream and eventually metastasize to distant body organs. However, a major hurdle with CTC analysis is their natural scarcity. Existing methods lack sensitivity, specificity, or reproducibility required in CTC characterization and detection. Here, we report untargeted molecular profiling of single CTCs obtained from gastric cancer and colorectal cancer patients, using live single cell mass spectrometry integrated with microfluidics‐based cell enrichment techniques. Using this approach, we showed the difference in the metabolomic profile between CTCs originating from different cancer groups. Moreover, potential biomarkers were putatively annotated to be specific to each cancer type. Single circulating tumor cells analyses were carried out using a live single cell mass spectrometry system integrated with a microfluidics‐based cells enrichment technique. Potential biomarkers specific to circulating tumor cells or each cancer type (gastric colorectal cancer) were annotated, suggesting the usability of the developed method.
Reevaluation of reference values for bone marrow differential counts in 236 healthy bone marrow donors
Despite the increasing role of molecular markers, differential counts and morphology of hematopoietic cells in the bone marrow (BM) remain essential diagnostic criteria in hematological diseases. However, the respective reference values for BM myelogram commonly used came from small series with limited numbers of healthy individuals. We evaluated the myelograms of 236 healthy individuals who underwent unrelated bone marrow donation. Health check-ups were performed 4 weeks prior to harvest. Samples for this study, taken from the first aspiration, were stained according to the standard Pappenheim method. Three experienced investigators assessed cellularity, megakaryopoiesis, and differential counts independently. The median donor age was 31 (range 18–51) years. Predonation tests did not reveal any relevant morbidity. Thirty-seven out of 42 hypocellular marrow samples were from younger donors up to 39 years. Content of megakaryocytes was normal in 210 specimens (89%). Gender and body mass index had significant impact on hematopoiesis, whereas age had not. The number of erythroblasts was higher (about 32%) and the proportion granulopoiesis slightly lower (about 50%) compared with previous studies. Differential counts showed also some differences with respect to individual maturation stages in these lines. Interrater comparisons showed greater reliability for the assignment of cells to the different hematopoietic cell lines than for single-cell diagnoses. This study largely confirms the results for cell counts in normal human bone marrow available from previous reports and provides some insights into factors that affect individual cell populations. It also reveals substantial variability among even experienced investigators in cytological diagnoses.
Label-free hematology analysis using deep-ultraviolet microscopy
Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.
Physiological Changes and Trimester-Specific Reference Intervals for Complete Blood Count Parameters in Korean Pregnant Women
Background and Objectives: Pregnancy induces numerous physiological changes, including hematologic adaptations, which affect complete blood count (CBC) parameters. Existing reference intervals for CBC are often based on non-pregnant populations, potentially limiting their clinical utility during pregnancy. This study aimed to evaluate longitudinal changes in CBC parameters throughout pregnancy in Korean women and to establish gestational age-specific reference intervals. Materials and Methods: This retrospective study, conducted between March and May 2025, included CBC tests consecutively performed on the same individuals at five time points: the first trimester (≤12 weeks), second trimester (13–28 weeks), third trimester (29–40 weeks), delivery day, and the second postpartum day. Additionally, to prevent duplication with the primary cohort, CBC data from pregnant outpatients and non-pregnant controls were also analyzed to establish reference intervals. CBC parameters were measured using an automated hematology analyzer. Reference intervals were established using the 2.5th and 97.5th percentile of the distribution. Results: During pregnancy, white blood cell (WBC) counts increased most significantly during the second trimester, while hemoglobin (Hgb) levels declined most markedly at this stage. Platelet (PLT) counts showed a consistent and progressive decline. The reference intervals for CBC parameters—WBC (×109/L), Hgb (g/dL), and PLT (×109/L)—were 5.11–12.14, 11.3–14.3, and 184–374 in the first trimester; 6.11–13.45, 10.1–13.3, and 164–356 in the second trimester; and 5.62–12.42, 10.1–14.1, and 145–349 in the third trimester, respectively. Conclusions: This study examined longitudinal changes in CBC parameters in Korean pregnant women and provided gestational age-specific reference intervals for CBC. This is expected to help clinicians interpret CBC results in pregnant women.
Measuring single-cell density
We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL⁻¹. We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.