Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,252 result(s) for "cell-free DNA"
Sort by:
Early detection of metastatic uveal melanoma by the analysis of tumor‐specific mutations in cell‐free plasma DNA
Background Eye salvaging therapy of malignant melanomas of the uvea can preserve the eye in most cases, but still about half of patients die from metastatic disease. Previous analyses of cell‐free DNA from plasma had shown detectable levels of tumor‐specific GNAQ/GNA11 mutations in patients with the clinical diagnosis of progressive disease. However, data on the time span that elapses from the detection of ctDNA in plasma to the clinical detection of metastases (diagnostic lead time) are missing. Methods We examined 135 patients with uveal melanoma. Cell‐free DNA was isolated from a total of 807 blood samples which were taken over a period of up to 41 months and analyzed for the presence of GNAQ/GNA11 mutations by deep amplicon sequencing. Results Twenty‐one of the 135 patients developed metastases or recurrence. A ctDNA signal was identified in the plasma of 17 of the 21 patients. In 10 patients, this ctDNA signal preceded the clinical diagnosis of metastasis by 2–10 months. In 10 other patients, a ctDNA signal was only detected in samples obtained shortly before or after radiotherapy. The presence of a ctDNA signal in 16 of the remaining 125 patients was linked to clinical manifestation of metastases (n = 14) or tumor recurrence (n = 2) with a sensitivity and specificity of 80% and 96%, respectively. Conclusion Detection of ctDNA in plasma can provide a diagnostic lead time over the clinical diagnosis of metastases or tumor recurrence. Longer lead times are to be expected if intervals between sampling are shortened. In metastasized uveal melanoma (UM) patients, circulating tumor DNA (ctDNA) can be detected in blood. Here we explored if cfDNA is a suitable biomarker for the early detection of metastatic disease in UM patients. Our data show that this biomarker fulfills the expectation as, overall, about half of the patients who developed metastases showed a positive ctDNA signal prior to the clinical diagnosis of metastatic disease with a lead time ranging between 2 and 10 months. Moreover, it is reasonable that, with more frequent sampling time points, diagnostic lead times will be even longer.
Impact of Preanalytical and Analytical Methods on Cell-Free DNA Diagnostics
Depiction of the experimental design. While tissue biopsy has for the longest time been the gold-standard in biomedicine, precision/personalized medicine is making the shift toward liquid biopsies. Cell-free DNA (cfDNA) based genetic and epigenetic biomarkers reflect the molecular status of its tissue-of-origin allowing for early and non-invasive diagnostics of different pathologies. However, selection of preanalytical procedures (including cfDNA isolation) as well as analytical methods are known to impact the downstream results. Calls for greater standardization are made continuously, yet comprehensive assessments of the impact on diagnostic parameters are lacking. This study aims to evaluate the preanalytic and analytic factors that influence cfDNA diagnostic parameters in blood and semen. Text mining analysis has been performed to assess cfDNA research trends, and identify studies on isolation methods, preanalytical and analytical impact. Seminal and blood plasma were tested as liquid biopsy sources. Traditional methods of cfDNA isolation, commercial kits (CKs), and an in-house developed protocol were tested, as well as the impact of dithiothreitol (DTT) on cfDNA isolation performance. Fluorimetry, qPCR, digital droplet PCR (ddPCR), and bioanalyzer were compared as cfDNA quantification methods. Fragment analysis was performed by qPCR and bioanalyzer while the downstream application (cfDNA methylation) was analyzed by pyrosequencing. In contrast to blood, semen as a liquid biopsy source has only recently begun to be reported as a liquid biopsy source, with almost half of all publications on it being review articles. Experimental data revealed that cfDNA isolation protocols give a wide range of cfDNA yields, both from blood and seminal plasma. The addition of DTT to CKs has improved yields in seminal plasma and had a neutral/negative impact in blood plasma. Capillary electrophoresis and fluorometry reported much higher yields than PCR methods. While cfDNA yield and integrity were highly impacted, cfDNA methylation was not affected by isolation methodology or DTT. In conclusion, NucleoSnap was recognized as the kit with the best overall performance. DTT improved CK yields in seminal plasma. The in-house developed protocol has shown near-kit isolation performance. ddPCR LINE-1 assay for absolute detection of minute amounts of cfDNA was established and allowed for quantification of samples inhibited in qPCR. cfDNA methylation was recognized as a stable biomarker unimpacted by cfDNA isolation method. Finally, semen was found to be an abundant source of cfDNA offering potential research opportunities and benefits for cfDNA based biomarkers development related to male reproductive health.
Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson’s disease and multiple system atrophy
Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA. TaqMan probe-based quantitative PCR was employed to measure plasma cf-nDNA levels, cf-mtDNA copy numbers, and cf-mtDNA deletion levels in 171 participants, including 76 normal controls (NC), 62 PD patients, and 33 MSA patients. A generalized linear model was constructed to analyze differences in circulating cell-free DNA (cfDNA) biomarkers across clinical groups, while a logistic regression model was applied to assess the predictive values of these biomarkers for developing PD or MSA. Spearman correlations were used to explore associations between the three cfDNA biomarkers, demographic data, and clinical scales. No significant differences in plasma cf-nDNA levels, cf-mtDNA copy numbers, or cf-mtDNA deletion levels were observed among the PD, MSA, and NC groups (all > 0.05). Additionally, these measures were not associated with the risk of developing PD or MSA. In PD patients, cf-nDNA levels were positively correlated with Hamilton Anxiety Rating Scale scores (Rho = 0.382, FDR adjusted = 0.027). In MSA patients, cf-nDNA levels were positively correlated with International Cooperative Ataxia Rating Scale scores (Rho = 0.588, FDR adjusted = 0.011) and negatively correlated with Montreal Cognitive Assessment scores (Rho = -0.484, FDR adjusted = 0.044). Subgroup analysis showed that PD patients with constipation had significantly lower plasma cf-mtDNA copy numbers than those without constipation ( = 0.049). MSA patients with cognitive impairment had significantly higher cf-nDNA levels compared to those without ( = 0.008). Plasma cf-nDNA level, cf-mtDNA copy number, and cf-mtDNA deletion level have limited roles as diagnostic biomarkers for PD and MSA. However, their correlations with clinical symptoms support the hypothesis that cell loss and mitochondrial dysfunction are involved in PD and MSA development.
Comparison of paired cerebrospinal fluid and serum cell‐free mitochondrial and nuclear DNA with copy number and fragment length
Background Most studies on cell‐free DNA (cfDNA) were only for single body fluids; however, the differences in cfDNA distribution between two body fluids are rarely reported. Hence, in this work, we compared the differences in cfDNA distribution between cerebrospinal fluid (CSF) and serum of patients with brain‐related diseases. Methods The fragment length of cfDNA was determined by using Agilent 2100 Bioanalyzer. The copy numbers of cell‐free mitochondrial DNA (cf‐mtDNA) and cell‐free nuclear DNA (cf‐nDNA) were determined by using real‐time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) with three pairs of mitochondrial ND1 and nuclear GAPDH primers, respectively. Results There were short (~60 bp), medium (~167 bp), and long (>250 bp) cfDNA fragment length distributions totally obtained from CSF and serum using Agilent 2100 Bioanalyzer. The results of both qPCR and ddPCR confirmed the existence of these three cfDNA fragment ranges in CSF and serum. According to qPCR, the copy numbers of long cf‐mtDNA, medium, and long cf‐nDNA in CSF were significantly higher than in paired serum. In CSF, only long cf‐mtDNA's copy numbers were higher than long cf‐nDNA. But in serum, the copy numbers of medium and long cf‐mtDNA were higher than the corresponding cf‐nDNA. Conclusion The cf‐nDNA and cf‐mtDNA with different fragment lengths differentially distributed in the CSF and serum of patients with brain disorders, which might serve as a biomarker of human brain diseases.
DNA in extracellular vesicles: biological and clinical aspects
The presence of DNA in EVs, including exosomes and microvesicles, remains contentious as this field of study is still evolving. This review explores what is known about the biogenesis of EV‐DNA and the possible biological roles of DNA packaging into EVs. Moreover, we also discuss the potential clinical applications of EV‐DNA and how those compare to cell‐free DNA. The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.
The effect of surgical trauma on circulating free DNA levels in cancer patients—implications for studies of circulating tumor DNA
Detection of circulating tumor DNA (ctDNA) post‐treatment is an emerging marker of residual disease. ctDNA constitutes only a minor fraction of the cell‐free DNA (cfDNA) circulating in cancer patients, complicating ctDNA detection. This is exacerbated by trauma‐induced cfDNA. To guide optimal blood sample timing, we investigated the duration and magnitude of surgical trauma‐induced cfDNA in patients with colorectal or bladder cancer. DNA levels were quantified in paired plasma samples collected before and up to 6 weeks after surgery from 436 patients with colorectal cancer and 47 patients with muscle‐invasive bladder cancer. To assess whether trauma‐induced cfDNA fragments are longer than ordinary cfDNA fragments, the concentration of short (< 1 kb) and long (> 1 kb) fragments was determined for 91 patients. Previously reported ctDNA data from 91 patients with colorectal cancer and 47 patients with bladder cancer were used to assess how trauma‐induced DNA affects ctDNA detection. The total cfDNA level increased postoperatively—both in patients with colorectal cancer (mean threefold) and bladder cancer (mean eightfold). The DNA levels were significantly increased up to 4 weeks after surgery in both patient cohorts (P = 0.0005 and P ≤ 0.0001). The concentration of short, but not long, cfDNA fragments increased postoperatively. Of 25 patients with radiological relapse, eight were ctDNA‐positive and 17 were ctDNA‐negative in the period with trauma‐induced DNA. Analysis of longitudinal samples revealed that five of the negative patients became positive shortly after the release of trauma‐induced cfDNA had ceased. In conclusion, surgery was associated with elevated cfDNA levels, persisting up to 4 weeks, which may have masked ctDNA in relapse patients. Trauma‐induced cfDNA was of similar size to ordinary cfDNA. To mitigate the impact of trauma‐induced cfDNA on ctDNA detection, it is recommended that a second blood sample collected after week 4 is analyzed for patients initially ctDNA negative. We studied the change in circulating DNA levels resulting from cancer surgery. Surgical trauma caused an increase in the level of circulating DNA, which persisted up to 4 weeks after surgery. Detection of circulating tumor DNA after surgery was hampered by increased circulating DNA levels.
Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions
The application of genomic profiling assays using plasma circulating tumor DNA (ctDNA) is rapidly evolving in the management of patients with advanced solid tumors. Diverse plasma ctDNA technologies in both commercial and academic laboratories are in routine or emerging use. The increasing integration of such testing to inform treatment decision making by oncology clinicians has complexities and challenges but holds significant potential to substantially improve patient outcomes. In this review, the authors discuss the current role of plasma ctDNA assays in oncology care and provide an overview of ongoing research that may inform real‐world clinical applications in the near future.
Fragmentation patterns and personalized sequencing of cell‐free DNA in urine and plasma of glioma patients
Glioma‐derived cell‐free DNA (cfDNA) is challenging to detect using liquid biopsy because quantities in body fluids are low. We determined the glioma‐derived DNA fraction in cerebrospinal fluid (CSF), plasma, and urine samples from patients using sequencing of personalized capture panels guided by analysis of matched tumor biopsies. By sequencing cfDNA across thousands of mutations, identified individually in each patient’s tumor, we detected tumor‐derived DNA in the majority of CSF (7/8), plasma (10/12), and urine samples (10/16), with a median tumor fraction of 6.4 × 10 −3 , 3.1 × 10 −5 , and 4.7 × 10 −5 , respectively. We identified a shift in the size distribution of tumor‐derived cfDNA fragments in these body fluids. We further analyzed cfDNA fragment sizes using whole‐genome sequencing, in urine samples from 35 glioma patients, 27 individuals with non‐malignant brain disorders, and 26 healthy individuals. cfDNA in urine of glioma patients was significantly more fragmented compared to urine from patients with non‐malignant brain disorders ( P  = 1.7 × 10 −2 ) and healthy individuals ( P  = 5.2 × 10 −9 ). Machine learning models integrating fragment length could differentiate urine samples from glioma patients (AUC = 0.80–0.91) suggesting possibilities for truly non‐invasive cancer detection. SYNOPSIS Gliomas are challenging to detect using tumor derived cell‐free DNA (cfDNA) in body fluids. In this study, two novel analysis methods (tumor‐guided sequencing and sWGS) were developed to explore the potential of using plasma and urine cfDNA as a liquid biopsy for this malignancy. Multiple tumor regions were sequenced to recover a high number of mutations for designing tumor‐guided sequencing panels. Using tumor‐guided sequencing and the INVAR analysis approach, mutations were detected in 7/8 CSF, 10/12 plasma and 10/16 urine gliomas samples. Using low coverage whole genome sequencing, cfDNA fragmentation patterns were analysed in urine samples from 35 glioma patients, 27 individuals with non‐malignant brain disorders, and 26 healthy individuals. Fragment lengths differed significantly between these groups; Machine learning models (LR, SVM, RF, GLMEN) integrating fragment length could differentiate urine samples from glioma patients (AUC = 0.80–0.91). Graphical Abstract Gliomas are challenging to detect using tumor derived cell‐free DNA (cfDNA) in body fluids. In this study, two novel analysis methods (tumor‐guided sequencing and sWGS) were developed to explore the potential of using plasma and urine cfDNA as a liquid biopsy for this malignancy.
Detection of cell‐free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients
Glioma is difficult to detect or characterize using current liquid biopsy approaches. Detection of cell‐free tumor DNA (cftDNA) in cerebrospinal fluid (CSF) has been proposed as an alternative to detection in plasma. We used shallow whole‐genome sequencing (sWGS, at a coverage of < 0.4×) of cell‐free DNA from the CSF of 13 patients with primary glioma to determine somatic copy number alterations and DNA fragmentation patterns. This allowed us to determine the presence of cftDNA in CSF without any prior knowledge of point mutations present in the tumor. We also showed that the fragmentation pattern of cell‐free DNA in CSF is different from that in plasma. This low‐cost screening method provides information on the tumor genome and can be used to target those patients with high levels of cftDNA for further larger‐scale sequencing, such as by whole‐exome and whole‐genome sequencing. Synopsis Gliomas are challenging to detect based on cell‐free tumor DNA (cftDNA) in body fluids. In this study, a combined analysis of somatic copy number alterations (SCNA) and DNA fragmentation patterns based on shallow whole genome sequencing (sWGS) improves cftDNA detection in cerebrospinal fluid (CSF). SCNAs were detected by sWGS in CSF from 5 out of 13 patients. Cell‐free DNA fragments are shorter in CSF than in plasma, with > 50% of fragments below 150 bp. CSF cell‐free DNA fragment length distributions showed 10‐bp periodic peaks, which were decreased in samples where SCNAs were detected. SCNAs and DNA fragmentation patterns in sWGS data can enhance tumour detection using CSF samples. Graphical Abstract Gliomas are challenging to detect based on cell‐free tumor DNA (cftDNA) in body fluids. In this study, a combined analysis of somatic copy number alterations (SCNA) and DNA fragmentation patterns based on shallow whole genome sequencing (sWGS) improves cftDNA detection in cerebrospinal fluid (CSF).
Cell‐free DNA as a biomarker of aging
Cell‐free DNA (cfDNA) is present in the circulating plasma and other body fluids and is known to originate mainly from apoptotic cells. Here, we provide the first in vivo evidence of global and local chromatin changes in human aging by analyzing cfDNA from the blood of individuals of different age groups. Our results show that nucleosome signals inferred from cfDNA are consistent with the redistribution of heterochromatin observed in cellular senescence and aging in other model systems. In addition, we detected a relative cfDNA loss at several genomic locations, such as transcription start and termination sites, 5′UTR of L1HS retrotransposons and dimeric AluY elements with age. Our results also revealed age and deteriorating health status correlate with increased enrichment of signals from cells in different tissues. In conclusion, our results show that the sequencing of circulating cfDNA from human blood plasma can be used as a noninvasive methodology to study age‐associated changes to the epigenome in vivo.