Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,964 result(s) for "cellular microenvironment"
Sort by:
The dormant cancer cell life cycle
The success of targeted therapies and immunotherapies has created optimism that cancers may be curable. However, not all patients respond, drug resistance is common and many patients relapse owing to dormant cancer cells. These rare and elusive cells can disseminate early and hide in specialized niches in distant organs before being reactivated to cause disease relapse after successful treatment of the primary tumour. Despite their importance, we are yet to leverage knowledge generated from experimental models and translate the potential of targeting dormant cancer cells to prevent disease relapse in the clinic. This is due, at least in part, to the lack of adherence to consensus definitions by researchers, limited models that faithfully recapitulate this stage of metastatic spread and an absence of interdisciplinary approaches. However, the application of new high-resolution, single-cell technologies is starting to revolutionize the field and transcend classical reductionist models of studying individual cell types or genes in isolation to provide a global view of the complex underlying cellular ecosystem and transcriptional landscape that controls dormancy. In this Perspective, we synthesize some of these recent advances to describe the hallmarks of cancer cell dormancy and how the dormant cancer cell life cycle offers opportunities to target not only the cancer but also its environment to achieve a durable cure for seemingly incurable cancers.This Perspective proposes operational definitions to define the hallmarks of cancer cell dormancy and, based on the latest evidence pertaining to the role of the microenvironment in regulating dormancy, presents key stages in the life cycle of a dormant cancer cell that could be targeted.
Regulation of immune responses by the airway epithelial cell landscape
The community of cells lining our airways plays a collaborative role in the preservation of immune homeostasis in the lung and provides protection from the pathogens and pollutants in the air we breathe. In addition to its structural attributes that provide effective mucociliary clearance of the lower airspace, the airway epithelium is an immunologically active barrier surface that senses changes in the airway environment and interacts with resident and recruited immune cells. Single-cell RNA-sequencing is illuminating the cellular heterogeneity that exists in the airway wall and has identified novel cell populations with unique molecular signatures, trajectories of differentiation and diverse functions in health and disease. In this Review, we discuss how our view of the airway epithelial landscape has evolved with the advent of transcriptomic approaches to cellular phenotyping, with a focus on epithelial interactions with the local neuronal and immune systems.In this Review, Lloyd and Hewitt describe our contemporary understanding of the airway epithelial cell landscape. They highlight the new epithelial cell types that have been recently discovered and explain how epithelial cells interact with the immune and nervous systems to shape immunity in the airways.
Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance
Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogen Aspergillus fumigatus forms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity within A. fumigatus biofilms. Oxygen gradients inevitably arise during A. fumigatus biofilm maturation and are both critical for, and the result of, A. fumigatus late-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base of A. fumigatus biofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.
Regulation of immunity and inflammation by hypoxia in immunological niches
Key Points Hypoxia and inflammation are frequently co-incidental microenvironmental features of sites of concentrated physiological or pathological immune activity. Hypoxia activates hypoxia-inducible factor, which is a major regulator of multiple aspects of immune cell function. Consequently, hypoxia plays a key role in the regulation of immunity and inflammation. The impact of hypoxia on immunity and inflammation is site-specific and cell type-specific. Pharmacological hydroxylase inhibition, which activates hypoxia-sensitive pathways, is profoundly protective in multiple models of inflammation. Hypoxia is a microenvironmental feature that is associated with physiological and pathological immunological niches. In this Review, Taylor and Colgan summarize the effects of physiological and pathological hypoxia on immune cells and processes and discuss the possibility of therapeutically targeting hypoxia-sensitive pathways. Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.
T cell regeneration after immunological injury
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.Reconstitution of the immune system after depletion by chemotherapy, radiotherapy, infection or transplantation is crucial to maintain protection from infection and to respond to immune-based therapy. Here the authors describe the ways in which a diverse T cell compartment can be restored, focusing on therapeutic strategies that drive the production of new T cells.
Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8+ T cells
Tissue-resident memory T cells (T RM cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway T RM cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway T RM cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce T RM cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway T RM cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung T RM cell populations and show that local environmental cues altered airway T RM cells to limit cytolytic function and promote cell death, which ultimately leads to fewer T RM cells in the lung. Kohlmeier and colleagues showed that the airway environment drove transcriptional and epigenetic changes that regulated the cytolytic functions of airway T RM cells and promoted their apoptosis due to amino acid starvation and activation of the integrated stress response.
Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling
The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix–cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvβ1 to establish focal adhesions and promotes nuclear shuttling of Yesassociated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin β1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.
Leukocyte migration in the interstitial space of non-lymphoid organs
Key Points Optimized interstitial migration of leukocytes is necessary for their timely arrival at sites of tissue injury and microbial assault. This process is regulated by a multitude of cell-intrinsic and environmental factors. Intravital imaging studies have shed new light on the dynamics and regulation of interstitial leukocyte migration in non-lymphoid organs. These studies are discussed in this Review, with a focus on neutrophils and T cells. The actin cytoskeleton regulates the formation of a polarized cellular shape, which defines the 'amoeboid' migration mode of leukocytes in the interstitial space. Transendothelial migration of leukocytes and their entry into the interstitial space is regulated by the perivascular extravasation unit (PVEU), which is composed of endothelial cells, pericytes, perivascular macrophages, mast cells and the basement membrane. The PVEU provides physical and biochemical guidance for leukocytes during and after diapedesis. Neutrophil migration towards a focus of tissue injury is regulated by a multistep process defined by scouting, amplification and stabilization phases. Scouting is the initial process whereby scarce neutrophils accumulate at the focus. In a feedforward loop, these cells then attract waves of additional neutrophils, which form a cluster around the focus in order to contain tissue injury and pathogens. Directional decision making by migrating neutrophils is mediated by temporally and spatially coordinated gradients of chemoattractants and chemorepellents within tissues, and by physical guidance structures provided, for example, by pericytes. Multiple competing signals are integrated by intracellular signalling molecules in crawling neutrophils. Migrating effector T cell populations scan tissues for the presence of antigen. Signals delivered by the T cell receptor regulate both migratory stops — which are necessary for target cell interactions — and also the highly active migratory phenotype of T cells. Investigation of T cell population dynamics suggests that Lévy walk behaviour underlies the search strategies of T cells, and optimizes target screening behaviour. Functional impairment of T cells, such as a tolerized or exhausted state, is paralleled by impaired migration. Co-stimulatory and co-inhibitory pathways have been implicated in regulating the migration of functionally impaired T cells. A variety of innate immune cell subsets display active screening behaviour in non-lymphoid organs, which underlies the rapid detection of tissue debris or pathogens. This Review follows neutrophils and T cells as they journey from the blood into tissues in search of sites of infection or injury. It highlights the mediators, which form temporally and spatially coordinated gradients within the tissues, and the mechanisms, including physical structures, that guide this directional migration. Leukocyte migration through interstitial tissues is essential for mounting a successful immune response. Interstitial motility is governed by a vast array of cell-intrinsic and cell-extrinsic factors that together ensure the proper positioning of immune cells in the context of specific microenvironments. Recent advances in imaging modalities, in particular intravital confocal and multi-photon microscopy, have helped to expand our understanding of the cellular and molecular mechanisms that underlie leukocyte navigation in the extravascular space. In this Review, we discuss the key factors that regulate leukocyte motility within three-dimensional environments, with a focus on neutrophils and T cells in non-lymphoid organs.
Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments
Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-β-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.
Novel specialized cell state and spatial compartments within the germinal center
Within germinal centers (GCs), complex and highly orchestrated molecular programs must balance proliferation, somatic hypermutation and selection to both provide effective humoral immunity and to protect against genomic instability and neoplastic transformation. In contrast to this complexity, GC B cells are canonically divided into two principal populations, dark zone (DZ) and light zone (LZ) cells. We now demonstrate that, following selection in the LZ, B cells migrated to specialized sites within the canonical DZ that contained tingible body macrophages and were sites of ongoing cell division. Proliferating DZ (DZp) cells then transited into the larger DZ to become differentiating DZ (DZd) cells before re-entering the LZ. Multidimensional analysis revealed distinct molecular programs in each population commensurate with observed compartmentalization of noncompatible functions. These data provide a new three-cell population model that both orders critical GC functions and reveals essential molecular programs of humoral adaptive immunity. Germinal centers are typically divided into dark and light zones. Clark and colleagues identify ‘gray zone’ cyclin B1 + B cell clusters as sites of ongoing cell proliferation, and these cells are distinct from dark zone B cells that undergo AID-dependent somatic hypermutation. This separation of function safeguards B cells undergoing DNA replication against potential mutagenic events that could result in neoplastic transformation.