Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "challenging object characteristics"
Sort by:
6D Object Localization in Car-Assembly Industrial Environment
In this work, a visual object detection and localization workflow integrated into a robotic platform is presented for the 6D pose estimation of objects with challenging characteristics in terms of weak texture, surface properties and symmetries. The workflow is used as part of a module for object pose estimation deployed to a mobile robotic platform that exploits the Robot Operating System (ROS) as middleware. The objects of interest aim to support robot grasping in the context of human–robot collaboration during car door assembly in industrial manufacturing environments. In addition to the special object properties, these environments are inherently characterised by cluttered background and unfavorable illumination conditions. For the purpose of this specific application, two different datasets were collected and annotated for training a learning-based method that extracts the object pose from a single frame. The first dataset was acquired in controlled laboratory conditions and the second in the actual indoor industrial environment. Different models were trained based on the individual datasets and a combination of them were further evaluated in a number of test sequences from the actual industrial environment. The qualitative and quantitative results demonstrate the potential of the presented method in relevant industrial applications.