Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
336
result(s) for
"chance constraints"
Sort by:
The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty
by
Gounaris, Chrysanthos E.
,
Floudas, Christodoulos A.
,
Wiesemann, Wolfram
in
Analysis
,
chance constraints
,
Cost control
2013
The robust capacitated vehicle routing problem (CVRP) under demand uncertainty is studied to address the minimum cost delivery of a product to geographically dispersed customers using capacity-constrained vehicles. Contrary to the deterministic CVRP, which postulates that the customer demands for the product are deterministic and known, the robust CVRP models the customer demands as random variables, and it determines a minimum cost delivery plan that is feasible for all anticipated demand realizations. Robust optimization counterparts of several deterministic CVRP formulations are derived and compared numerically. Robust rounded capacity inequalities are developed, and it is shown how they can be separated efficiently for two broad classes of demand supports. Finally, it is analyzed how the robust CVRP relates to the chance-constrained CVRP, which allows a controlled degree of supply shortfall to decrease delivery costs.
Journal Article
Joint Adaptive Sampling Interval and Power Allocation for Maneuvering Target Tracking in a Multiple Opportunistic Array Radar System
by
Liang, Zhiheng
,
Shan, Chenggang
,
Han, Qinghua
in
best-fitting gaussian (bfg)
,
chance-constraint programming (ccp)
,
cramér-rao lower bound like (crlb-like)
2020
In this paper, a joint adaptive sampling interval and power allocation (JASIPA) scheme based on chance-constraint programming (CCP) is proposed for maneuvering target tracking (MTT) in a multiple opportunistic array radar (OAR) system. In order to conveniently predict the maneuvering target state of the next sampling instant, the best-fitting Gaussian (BFG) approximation is introduced and used to replace the multimodal prior target probability density function (PDF) at each time step. Since the mean and covariance of the BFG approximation can be computed by a recursive formula, we can utilize an existing Riccati-like recursion to accomplish effective resource allocation. The prior Cramér-Rao lower boundary (prior CRLB-like) is compared with the upper boundary of the desired tracking error range to determine the adaptive sampling interval, and the Bayesian CRLB-like (BCRLB-like) gives a criterion used for measuring power allocation. In addition, considering the randomness of target radar cross section (RCS), we adopt the CCP to package the deterministic resource management model, which minimizes the total transmitted power by effective resource allocation. Lastly, the stochastic simulation is embedded into a genetic algorithm (GA) to produce a hybrid intelligent optimization algorithm (HIOA) to solve the CCP optimization problem. Simulation results show that the global performance of the radar system can be improved effectively by the resource allocation scheme.
Journal Article
A Dynamic Economic Dispatch Model Incorporating Wind Power Based on Chance Constrained Programming
2015
In order to maintain the stability and security of the power system, the uncertainty and intermittency of wind power must be taken into account in economic dispatch (ED) problems. In this paper, a dynamic economic dispatch (DED) model based on chance constrained programming is presented and an improved particle swarm optimization (PSO) approach is proposed to solve the problem. Wind power is regarded as a random variable and is included in the chance constraint. New formulation of up and down spinning reserve constraints are presented under expectation meaning. The improved PSO algorithm combines a feasible region adjustment strategy with a hill climbing search operation based on the basic PSO. Simulations are performed under three distinct test systems with different generators. Results show that both the proposed DED model and the improved PSO approach are effective.
Journal Article
Robust reformulations of ambiguous chance constraints with discrete probability distributions
2019
This paper proposes robust reformulations of ambiguous chance constraints when the underlying family of distributions is discrete and supported in a so-called ``p-box'' or ``p-ellipsoidal'' uncertainty set. Using the robust optimization paradigm, the deterministic counterparts of the ambiguous chance constraints are reformulated as mixed-integer programming problems which can be tackled by commercial solvers for moderate sized instances. For larger sized instances, we propose a safe approximation algorithm that is computationally efficient and yields high quality solutions. The associated approach and the algorithm can be easily extended to joint chance constraints, nonlinear inequalities, and dependent data without introducing additional mathematical optimization complexity to that of the original robust reformulation. In numerical experiments, we first present our approach over a toy-sized chance constrained knapsack problem. Then, we compare optimality and computational performances of the safe approximation algorithm with those of the exact and the randomized approaches for larger sized instances via Monte Carlo simulation.
Journal Article
Data-driven robust optimization
by
Bertsimas, Dimitris
,
Kallus, Nathan
,
Gupta, Vishal
in
Design optimization
,
Nonlinear programming
,
Operations research
2018
The last decade witnessed an explosion in the availability of data for operations research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using statistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computationally tractable, both theoretically and practically. Furthermore, optimal solutions to these problems enjoy a strong, finite-sample probabilistic guarantee whenever the constraints and objective function are concave in the uncertainty. We describe concrete procedures for choosing an appropriate set for a given application and applying our approach to multiple uncertain constraints. Computational evidence in portfolio management and queueing confirm that our data-driven sets significantly outperform traditional robust optimization techniques whenever data are available.
Journal Article
Ambiguous Joint Chance Constraints Under Mean and Dispersion Information
by
Wiesemann, Wolfram
,
Hanasusanto, Grani A.
,
Roitch, Vladimir
in
Ambiguity
,
Constraints
,
Degrees of freedom (Mechanics)
2017
We study joint chance constraints where the distribution of the uncertain parameters is only known to belong to an ambiguity set characterized by the mean and support of the uncertainties and by an upper bound on their dispersion. This setting gives rise to pessimistic (optimistic) ambiguous chance constraints, which require the corresponding classical chance constraints to be satisfied for every (for at least one) distribution in the ambiguity set. We demonstrate that the pessimistic joint chance constraints are conic representable if (i) the constraint coefficients of the decisions are deterministic, (ii) the support set of the uncertain parameters is a cone, and (iii) the dispersion function is of first order, that is, it is positively homogeneous. We also show that pessimistic joint chance constrained programs become intractable as soon as any of the conditions (i), (ii) or (iii) is relaxed in the mildest possible way. We further prove that the optimistic joint chance constraints are conic representable if (i) holds, and that they become intractable if (i) is violated. We show in numerical experiments that our results allow us to solve large-scale project management and image reconstruction models to global optimality.
The online appendix is available at
https://doi.org/10.1287/opre.2016.1583
.
Journal Article
Data-driven chance constrained stochastic program
by
Jiang, Ruiwei
,
Guan, Yongpei
in
Approximation
,
Calculus of Variations and Optimal Control; Optimization
,
Combinatorics
2016
In this paper, we study data-driven chance constrained stochastic programs, or more specifically, stochastic programs with distributionally robust chance constraints (DCCs) in a data-driven setting to provide robust solutions for the classical chance constrained stochastic program facing ambiguous probability distributions of random parameters. We consider a family of density-based confidence sets based on a general
ϕ
-divergence measure, and formulate DCC from the perspective of robust feasibility by allowing the ambiguous distribution to run adversely within its confidence set. We derive an equivalent reformulation for DCC and show that it is equivalent to a classical chance constraint with a perturbed risk level. We also show how to evaluate the perturbed risk level by using a bisection line search algorithm for general
ϕ
-divergence measures. In several special cases, our results can be strengthened such that we can derive closed-form expressions for the perturbed risk levels. In addition, we show that the conservatism of DCC vanishes as the size of historical data goes to infinity. Furthermore, we analyze the relationship between the conservatism of DCC and the size of historical data, which can help indicate the value of data. Finally, we conduct extensive computational experiments to test the performance of the proposed DCC model and compare various
ϕ
-divergence measures based on a capacitated lot-sizing problem with a quality-of-service requirement.
Journal Article
A Sample Approximation Approach for Optimization with Probabilistic Constraints
2008
We study approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample. We show that such a sample approximation problem with a risk level larger than the required risk level will yield a lower bound to the true optimal value with probability approaching one exponentially fast. This leads to an a priori estimate of the sample size required to have high confidence that the sample approximation will yield a lower bound. We then provide conditions under which solving a sample approximation problem with a risk level smaller than the required risk level will yield feasible solutions to the original problem with high probability. Once again, we obtain a priori estimates on the sample size required to obtain high confidence that the sample approximation problem will yield a feasible solution to the original problem. Finally, we present numerical illustrations of how these results can be used to obtain feasible solutions and optimality bounds for optimization problems with probabilistic constraints.
Journal Article
A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support
2014
We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with finite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to find provably good solutions in certain very special cases. Our approach uses both decomposition, to enable processing subproblems corresponding to one possible outcome at a time, and integer programming techniques, to combine the results of these subproblems to yield strong valid inequalities. Computational results on a chance-constrained formulation of a resource planning problem inspired by a call center staffing application indicate the approach works significantly better than both an existing mixed-integer programming formulation and a simple decomposition approach that does not use strong valid inequalities. We also demonstrate how the approach can be used to efficiently solve for a sequence of risk levels, as would be done when solving for the efficient frontier of risk and cost.
Journal Article
Shortening the project schedule: solving multimode chance-constrained critical chain buffer management using reinforcement learning
2024
Critical chain buffer management (CCBM) has been extensively studied in recent years. This paper investigates a new formulation of CCBM, the multimode chance-constrained CCBM problem. A flow-based mixed-integer linear programming model is described and the chance constraints are tackled using a scenario approach. A reinforcement learning (RL)-based algorithm is proposed to solve the problem. A factorial experiment is conducted and the results of this study indicate that solving the chance-constrained problem produces shorter project durations than the traditional approach that inserts time buffers into a baseline schedule generated by solving the deterministic problem. This paper also demonstrates that our RL method produces competitive schedules compared to established benchmarks. The importance of solving the chance-constrained problem and obtaining a project buffer tailored to the desired probability of completing the project on schedule directly from the solution is highlighted. Because of its potential for generating shorter schedules with the same on-time probabilities as the traditional approach, this research can be a useful aid for decision makers.
Journal Article