Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26,016 result(s) for "checkpoint inhibitors"
Sort by:
Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer
A randomized trial compared standard chemotherapy plus dostarlimab or placebo. Patients with mismatch repair–deficient tumors had 2-year progression-free survival of 61.4% with dostarlimab and 15.7% with placebo.
Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma
Previously untreated patients with advanced esophageal cancer were randomly assigned to receive chemotherapy alone, chemotherapy plus nivolumab, or nivolumab plus ipilimumab. Among patients with tumor-cell PD-L1 expression of 1% or greater, the two nivolumab regimens resulted in longer overall survival than chemotherapy. The side-effect profile was consistent with past reports on these agents.
Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity
T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8 + tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10–Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8 + tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10–Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy. Tang and colleagues show that a half-life-extended IL-10–Fc fusion protein acts directly on terminally exhausted PD1 + TIM-3 + CD8 + T cells to enhance their proliferation and effector function by reprogramming the cellular metabolism to oxidative phosphorylation in a mitochondrial pyruvate carrier–dependent manner. Treatment of tumor-bearing mice with IL-10–Fc and adoptive T cell therapy led to eradication of their established solid tumors and durable cures.
Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer
Adjuvant chemotherapy has not improved disease-free survival among patients with resected esophageal or gastroesophageal junction cancer. In this trial, after neoadjuvant chemoradiotherapy and resection, patients with residual disease were randomly assigned to receive nivolumab or placebo. Nivolumab doubled the median disease-free survival from 11.0 to 22.4 months.
An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis
Myeloid cells are known to suppress antitumour immunity 1 . However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab 2 – 5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site. Single-cell transcriptomics studies on human and mouse non-small cell lung cancer and conditional knockout mouse models show that IL-4 from bone marrow basophils drives the development of granulocyte-monocyte progenitors to myeloid cells that suppress antitumour immunity.
Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways
The discovery and clinical implementation of immune-checkpoint inhibitors (ICIs) targeting CTLA4, PD-1 and PD-L1 has revolutionized the treatment of cancer, as recognized by the 2018 Nobel Prize for Medicine and Physiology. This groundbreaking new approach has improved the outcomes of patients with various forms of advanced-stage cancer; however, the majority of patients receiving these therapies, even in combination, do not derive clinical benefit. Further development of agents targeting additional immune checkpoints, co-stimulatory receptors and/or co-inhibitory receptors that control T cell function is therefore critical. In this Review, we discuss the translational potential and clinical development of agents targeting both co-stimulatory and co-inhibitory T cell receptors. Specifically, we describe their mechanisms of action, and provide an overview of ongoing clinical trials involving novel ICIs including those targeting LAG3, TIM3, TIGIT and BTLA as well as agonists of the co-stimulatory receptors GITR, OX40, 41BB and ICOS. We also discuss several additional approaches, such as harnessing T cell metabolism, in particular via adenosine signalling, inhibition of IDO1, and targeting changes in glucose and fatty acid metabolism. We conclude that further efforts are needed to optimize the timing of combination ICI approaches and, most importantly, to individualize immunotherapy based on both patient-specific and tumour-specific characteristics.Immune-checkpoint inhibitors have dramatically improved the outcomes in patients with advanced-stage cancers, although the majority of patients will not respond to these agents. Here, the authors describe the potential of targeting emerging immunomodulatory pathways, with a focus on alternative immune checkpoints and tumour metabolism as approaches that might enable further improvements in the outcomes of patients with cancer, either as monotherapies or in combination with existing agents.
PD-L1 as a biomarker of response to immune-checkpoint inhibitors
Immune-checkpoint inhibitors targeting PD-1 or PD-L1 have already substantially improved the outcomes of patients with many types of cancer, although only 20–40% of patients derive benefit from these new therapies. PD-L1, quantified using immunohistochemistry assays, is currently the most widely validated, used and accepted biomarker to guide the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies. However, many challenges remain in the clinical use of these assays, including the necessity of using different companion diagnostic assays for specific agents, high levels of inter-assay variability in terms of both performance and cut-off points, and a lack of prospective comparisons of how PD-L1+ disease diagnosed using each assay relates to clinical outcomes. In this Review, we describe the current role of PD-L1 immunohistochemistry assays used to inform the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies, we discuss the various technical and clinical challenges associated with these assays, including regulatory issues, and we provide some perspective on how to optimize PD-L1 as a selection biomarker for the future treatment of patients with solid tumours.PD-L1 expression is currently the best available biomarker for the prediction of responsiveness to immune-checkpoint inhibitors. However, several immunohistochemical assays are now approved for clinical use in various settings, despite imperfect inter-assay concordance, with important implications for pathology services and, potentially, for clinical outcomes. In this Review, the authors compare the performance of the various FDA-approved PD-L1 assays, discuss the varying implications of PD-L1 expression across different tumour types and provide guidance on possible novel approaches that might optimize the clinical utility of PD-L1 as a biomarker.
Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors
Conventional chemotherapeutics have been developed into clinically useful agents based on their ability to preferentially kill malignant cells, generally owing to their elevated proliferation rate. Nonetheless, the clinical activity of various chemotherapies is now known to involve the stimulation of anticancer immunity either by initiating the release of immunostimulatory molecules from dying cancer cells or by mediating off-target effects on immune cell populations. Understanding the precise immunological mechanisms that underlie the efficacy of chemotherapy has the potential not only to enable the identification of superior biomarkers of response but also to accelerate the development of synergistic combination regimens that enhance the clinical effectiveness of immune checkpoint inhibitors (ICIs) relative to their effectiveness as monotherapies. Indeed, accumulating evidence supports the clinical value of combining appropriately dosed chemotherapies with ICIs. In this Review, we discuss preclinical and clinical data on the immunostimulatory effects of conventional chemotherapeutics in the context of ICI-based immunotherapy.The efficacy of chemotherapy in patients with cancer is now known to have an immunogenic component. Nonetheless, chemotherapy alone often fails to provide durable disease remission in most patients. The development of immune checkpoint inhibitors has created an opportunity to combine immunogenic chemotherapies with these agents in order to optimize patient outcomes. In this Review, the authors describe the mechanisms of synergy between chemotherapy and immune checkpoint inhibitors, summarize the available clinical data on these effects and highlight the most promising areas for future research.
Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities
Cancer immunotherapy (CIT) with antibodies targeting the programmed cell death 1 protein (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis have changed the standard of care in multiple cancers. However, durable antitumor responses have been observed in only a minority of patients, indicating the presence of other inhibitory mechanisms that act to restrain anticancer immunity. Therefore, new therapeutic strategies targeted against other immune suppressive mechanisms are needed to enhance anticancer immunity and maximize the clinical benefit of CIT in patients who are resistant to immune checkpoint inhibition. Preclinical and clinical studies have identified abnormalities in the tumor microenvironment (TME) that can negatively impact the efficacy of PD-1/PD-L1 blockade. Angiogenic factors such as vascular endothelial growth factor (VEGF) drive immunosuppression in the TME by inducing vascular abnormalities, suppressing antigen presentation and immune effector cells, or augmenting the immune suppressive activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. In turn, immunosuppressive cells can drive angiogenesis, thereby creating a vicious cycle of suppressed antitumor immunity. VEGF-mediated immune suppression in the TME and its negative impact on the efficacy of CIT provide a therapeutic rationale to combine PD-1/PD-L1 antibodies with anti-VEGF drugs in order to normalize the TME. A multitude of clinical trials have been initiated to evaluate combinations of a PD-1/PD-L1 antibody with an anti-VEGF in a variety of cancers. Recently, the positive results from five Phase III studies in non-small cell lung cancer (adenocarcinoma), renal cell carcinoma, and hepatocellular carcinoma have shown that combinations of PD-1/PD-L1 antibodies and anti-VEGF agents significantly improved clinical outcomes compared with respective standards of care. Such combinations have been approved by health authorities and are now standard treatment options for renal cell carcinoma, non-small cell lung cancer, and hepatocellular carcinoma. A plethora of other randomized studies of similar combinations are currently ongoing. Here, we discuss the principle mechanisms of VEGF-mediated immunosuppression studied in preclinical models or as part of translational clinical studies. We also discuss data from recently reported randomized clinical trials. Finally, we discuss how these concepts and approaches can be further incorporated into clinical practice to improve immunotherapy outcomes for patients with cancer.
A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy
The introduction of immune checkpoint inhibitors has demonstrated significant improvements in survival for subsets of cancer patients. However, they carry significant and sometimes life-threatening toxicities. Prompt prediction and monitoring of immune toxicities have the potential to maximise the benefits of immune checkpoint therapy. Herein, we develop a digital nanopillar SERS platform that achieves real-time single cytokine counting and enables dynamic tracking of immune toxicities in cancer patients receiving immune checkpoint inhibitor treatment - broader applications are anticipated in other disease indications. By analysing four prospective cytokine biomarkers that initiate inflammatory responses, the digital nanopillar SERS assay achieves both highly specific and highly sensitive cytokine detection down to attomolar level. Significantly, we report the capability of the assay to longitudinally monitor 10 melanoma patients during immune inhibitor blockade treatment. Here, we show that elevated cytokine concentrations predict for higher risk of developing severe immune toxicities in our pilot cohort of patients. There is a clinical need to monitor immune-related toxicities of immune checkpoint blockade therapy. Here, the authors develop a digital SERS platform for multiplexed single cytokine counting to track immune-toxicities and demonstrate the ability to use pre-screening to identify patients at higher risk.