Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
814
result(s) for
"chemotypes"
Sort by:
Ancestral chemotypes of cultivated grapevine with resistance to Botryosphaeriaceae-related dieback allocate metabolism towards bioactive stilbenes
by
Baltenweck, Raymonde
,
Sahi, Vaidurya P.
,
Hugueney, Philippe
in
Ascomycota
,
Biological activity
,
Botryosphaeriaceae
2021
• Grapevine trunk diseases have devastating consequences on vineyards worldwide. European wild grapevines (Vitis vinifera subs. sylvestris) from the last viable population in Germany along the Rhine river showed variable degrees of resistance against Neofusicoccum parvum (strain Bt-67), a fungus associated with Botryosphaeriaceae-related dieback.
• Representative genotypes from different subclades of this population were mapped with respect to their ability to induce wood necrosis, as well as their defence responses in a controlled inoculation system.
• The difference in colonization patterns could be confirmed by cryo-scanning electron microscopy, while there was no relationship between vessel diameter and infection success. Resistant lines accumulated more stilbenes, that were in addition significantly partitioned to nonglycosylated viniferin trimers. By contrast, the susceptible genotypes accumulated less stilbenes with a significantly higher proportion of glycosylated piceid.
• We suggest a model in which in the resistant genotypes phenylpropanoid metabolism is channelled rapidly and specifically to the bioactive stilbenes. Our study specifies a resistant chemotype against grapevines trunk diseases and paves a way to breed for resistance against grapevine Botryosphaeriaceae-related dieback.
Journal Article
A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil
2022
Ocimum
species represent commercially important medicinal and aromatic plants. The essential oil biosynthesized by
Ocimum
species is enriched with specialized metabolites specifically, terpenoids and phenylpropanoids. Interestingly, various
Ocimum
species are known to exhibit diverse chemical profiles, and this chemical diversity has been at the center of many studies to identify commercially important chemotypes. Here, we present various chemotypes from the
Ocimum
species and emphasize trends, implications, and strategies for the quality and yield improvement of essential oil. Globally, many
Ocimum
species have been analyzed for their essential oil composition in over 50 countries. Asia represents the highest number of chemotypes, followed by Africa, South America, and Europe.
Ocimum basilicum
L. has been the most widespread and well-studied species, followed by
O
.
gratissimum
L.,
O
.
tenuiflorum
L.,
O
.
canum
Sims,
O
.
americanum
and
O
.
kilimandscharicum
Gürke. Moreover, various molecular reasons, benefits, adverse health effects and mechanisms behind this vast chemodiversity have been discussed. Different strategies of plant breeding, metabolic engineering, transgenic, and tissue-culture, along with anatomical modifications, are surveyed to enhance specific chemotypic profiles and essential oil yield in numerous
Ocimum
species. Consequently, chemical characterization of the essential oil obtained from
Ocimum
species has become indispensable for its proper utilization
.
The present chemodiversity knowledge from
Ocimum
species will help to exploit various applications in the industrial, agriculture, biopharmaceutical, and food sectors.
Journal Article
Effects of MhMYB1 and MhMYB2 transcription factors on the monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq
by
Ouyang, Zhen
,
Wei, Yuan
,
Wan, Jingqiong
in
Bioinformatics
,
Biosynthesis
,
Chemical composition
2024
Main conclusionTranscription factors MhMYB1 and MhMYB2 correlate with monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq, which could affect the contents of ( −)-menthol and ( −)-menthone.Mentha haplocalyx Briq., a plant with traditional medicinal and edible uses, is renowned for its rich essential oil content. The distinct functional activities and aromatic flavors of mint essential oils arise from various chemotypes. While the biosynthetic pathways of the main monoterpenes in mint are well understood, the regulatory mechanisms governing different chemotypes remain inadequately explored. In this investigation, we identified and cloned two transcription factor genes from the M. haplocalyx MYB family, namely MhMYB1 (PP236792) and MhMYB2 (PP236793), previously identified by our research group. Bioinformatics analysis revealed that MhMYB1 possesses two conserved MYB domains, while MhMYB2 contains a conserved SANT domain. Yeast one-hybrid (Y1H) analysis results demonstrated that both MhMYB1 and MhMYB2 interacted with the promoter regions of MhMD and MhPR, critical enzymes in the monoterpenoid biosynthesis pathway of M. haplocalyx. Subsequent virus-induced gene silencing (VIGS) of MhMYB1 and MhMYB2 led to a significant reduction (P < 0.01) in the relative expression levels of MhMD and MhPR genes in the VIGS groups of M. haplocalyx. In addition, there was a noteworthy decrease (P < 0.05) in the contents of ( −)-menthol and ( −)-menthone in the essential oil of M. haplocalyx. These findings suggest that MhMYB1 and MhMYB2 transcription factors play a positive regulatory role in ( −)-menthol biosynthesis, consequently influencing the essential oil composition in the l-menthol chemotype of M. haplocalyx. This study serves as a pivotal foundation for unraveling the regulatory mechanisms governing monoterpenoid biosynthesis in different chemotypes of M. haplocalyx.
Journal Article
Dereplication strategies in natural product research: How many tools and methodologies behind the same concept?
by
Renault, Jean-Hugues
,
Nuzillard, Jean-Marc
,
Hubert, Jane
in
Acceleration
,
analytical methods
,
Biochemistry
2017
The development of new drugs will certainly benefit from an ever improving knowledge of the living beings chemistry. However, identification of drugable molecules within the immense biodiversity of forests, soils or oceans still requires considerable investments in technical equipments, time and human resources. An important part of this process is the quick identification of known substances in order to concentrate the efforts on the discovery of new ones. A range of “dereplication” procedures are currently emerging to meet this challenge as key strategies to improve the performance of natural product screening programs. Initially defined in 1990 as “a process of quickly identifying known chemotypes”, dereplication is today a not so univocal concept and has evolved over the last years in different ways. The present review covers all dereplication-related sudies in natural product research from 1990 to 2014. Its writing brought to light five distinct dereplication workflows that can be characterized by the nature of starting materials, by the selected analytical technique, and above all by the final objective. Dereplication can be used as an untargeted workflow for the rapid identification of the major compounds whatever their chemical class in a single sample or for the acceleration of bioactivity-guided fractionation procedures. In other cases dereplication is fully integrated in metabolomic studies for the untargeted chemical profiling of natural extract collections or for the targeted identification of a predetermined class of metabolites. Finally a quite distinct dereplication approach mainly based on gene-sequence analyses is frequently used for the taxonomic identification of microbial strains.
Journal Article
Induction by caterpillars of stored and emitted volatiles in terpene chemotypes from populations of wild cotton (Gossypium hirsutum)
by
Clancy, Mary V.
,
Quijano-Medina, Teresa
,
Pérez-Niño, Biiniza
in
Agriculture
,
Allelochemicals
,
Animals
2025
Background
Upland cotton (
Gossypium hirsutum
) plants constitutively store volatile terpenes in their leaves, which are steadily emitted at low levels. Herbivory leads to a greater release of these stored volatiles. Additionally, damaged plants increase the accumulation of volatile terpenes in their leaves and begin to synthesize and emit other terpenes and additional compounds. This has been well characterised for cultivated
G. hirsutum
, but little is known about volatile production in response to herbivory in wild populations. We investigated how damage by a generalist herbivore species, the beet armyworm (
Spodoptera exigua
), affects leaf-stored and emitted volatiles in wild
G. hirsutum
plants and compared the responses of two known chemotypes. Wild cotton plants were grown in a greenhouse from seeds collected from four distinct locations covering sixteen populations, along the Yucatan coast (Mexico), from where this cotton species originates. We assessed whether the differences in leaf terpene profiles between the two chemotypes persisted upon herbivory, in leaves and in headspace emissions, and whether these chemotypes also differed in the production and release of herbivory-induced volatiles. In addition to chemotypic variation, we further investigated intraspecific variation in the volatile response to herbivory among genotypes, populations, and the four geographic regions.
Results
The difference between the two chemotypes persisted after herbivory in the stored volatile profile of induced leaves, as well as in the emissions from damaged plants. Therefore, wild cotton chemotypes may differ in their airborne interactions with their environment. The specific terpenes distinguishing these chemotypes showed a weak inducibility, raising questions about their functions. Herbivory triggered changes in stored and emitted volatiles similar to what is known for cultivated varieties of
G. hirsutum.
However, we report for the first time on the emission of volatile aldoximes by cotton plants, which were only detected in the headspace upon herbivory, and displayed chemotypic and interpopulation variation. Intraspecific variation was also observed in the induced emissions of nitriles and certain terpenes. Moreover, chemotypes differed in their induction of (
E
)-β-ocimene stored in the leaves.
Conclusions
This comprehensive insight into herbivore-induced volatiles of wild cotton reveals variation in production and emission among populations. A full understanding of their ecological role may help in the development of future pest-management strategies for cotton crops.
Journal Article
Effects of intraspecific and intra-individual differences in plant quality on preference and performance of monophagous aphid species
2018
Plant chemistry is one of the main drivers of herbivore distribution. Monophagous herbivore species are highly specialized, but even within their only host species the chemistry varies. The herbivore’s choice is initially mainly guided by volatile plant compounds. Once on the plant, particularly for aphids the phloem quality affects their performance. However, little is known about the intraspecific and intra-individual variation in phloem sap and their influences on monophagous aphids. To determine potential mechanisms involved in aphid colonization, we tested the effects of intraspecific chemical variation in Tanacetum vulgare, which produces different chemotypes, on the preference of two monophagous aphid species. Moreover, we measured the performance of the aphids on different plant parts (stem close to the inflorescence, young and old leaves) of these chemotypes and analyzed their phloem sap composition. Both species preferred the β-thujone (THU) over the transcarvyl acetate (CAR) chemotype in dual-choice assays. Survival of Macrosiphoniella tanacetaria was neither affected by intraspecific nor intra-individual variation, whereas the reproduction was highest on stems. In contrast, Uroleucon tanaceti survived and reproduced best on old leaves of the preferred chemotype. The sugar, organic acid and amino acid composition pronouncedly differed between phloem exudates of different plant parts, but less between chemotypes. Unexpectedly, high concentrations of amino acids did not necessarily enhance aphid performance. These different performance optima may cause niche differentiation and, therefore, enable co-existence. In conclusion, the tremendous variation in plant chemistry even within one species can affect the distribution of highly specialized aphids at various scales aphid species-specifically.
Journal Article
Chemical Variation and Environmental Influence on Essential Oil of Cinnamomum camphora
2023
Cinnamomum camphora is a traditional aromatic plant used to produce linalool and borneol flavors in southern China; however, its leaves also contain many other unutilized essential oils. Herein, we report geographic relationships for the yield and compositional diversity of C. camphora essential oils. The essential oils of 974 individual trees from 35 populations in 13 provinces were extracted by hydrodistillation and analyzed qualitatively and quantitatively by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection, respectively. Oil yields ranged from 0.01% to 3.46%, with a significantly positive correlation with latitude and a significantly negative correlation with longitude. In total, 41 compounds were identified, including 15 monoterpenoids, 24 sesquiterpenoids, and two phenylpropanoids. Essential oil compositions varied significantly among individuals and could be categorized into various chemotypes. The six main chemotypes were eucalyptol, nerolidol, camphor, linalool, selina, and mixed types. The other 17 individual plants were chemotypically rare and exhibited high levels of methyl isoeugenol, methyl eugenol, δ-selinene, or borneol. Eucalyptol-type plants had the highest average oil yield of 1.64%, followed in decreasing order by linalool-, camphor-, mixed-, selina-, and nerolidol-type plants. In addition, the five main compounds exhibited a clear geographic gradient. Eucalyptol and linalool showed a significantly positive correlation with latitude, while selina-6-en-4-ol was significantly and negatively correlated with latitude. trans-Nerolidol and selina-6-en-4-ol showed significantly positive correlations with longitude, whereas camphor was significantly and negatively correlated with longitude. Canonical correspondence analysis indicated that environmental factors could strong effect the oil yield and essential oil profile of C. camphora.
Journal Article
Exploring Chemical Variability in the Essential Oils of the Thymus Genus
2024
Thyme remains an indispensable herb today, finding its place in gastronomy, medicine, cosmetics, and gardens worldwide. It is highly valued in herbal remedies and pharmaceutical formulations for its antibacterial, antifungal, and antioxidant properties derived from the richness of its essential oil, which comprises various volatile components. However, climate change poses a significant challenge today, potentially affecting the quality of thyme, particularly the extracted essential oil, along with other factors such as biotic influences and the plant’s geographical distribution. Consequently, complex diversity in essential oil composition was observed, also influenced by genetic diversity within the same species, resulting in distinct chemotypes. Other factors contributing to this chemodiversity include the chosen agrotechnology and processing methods of thyme, the extraction of the essential oil, and storage conditions. In this review, we provide the latest findings on the factors contributing to the chemovariability of thyme essential oil.
Journal Article
Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Poten tial Mycotoxin Production in China
2016
Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China.
Journal Article