Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,596 result(s) for "choline"
Sort by:
Choline supplementation and measures of choline and betaine status: a randomised, controlled trial in postmenopausal women
Choline is an essential nutrient and can also be obtained by de novo synthesis via an oestrogen responsive pathway. Choline can be oxidised to the methyl donor betaine, with short-term supplementation reported to lower plasma total homocysteine (tHcy); however, the effects of longer-term choline supplementation are less clear. We investigated the effect of choline supplementation on plasma concentrations of free choline, betaine and tHcy and B-vitamin status in postmenopausal women, a group more susceptible to low choline status. We also assessed whether supplementation altered plasma lipid profiles. In this randomised, double-blinded, placebo-controlled study, forty-two healthy postmenopausal women received 1 g choline per d (as choline bitartrate), or an identical placebo supplement with their habitual diet. Fasting blood samples were collected at baseline, week 6 and week 12. Administration of choline increased median choline and betaine concentrations in plasma, with significant effects evident after 6 weeks of supplementation (P < 0·001) and remaining significant at 12 weeks (P < 0·001); no effect was observed on folate status or on plasma lipids. Choline supplementation induced a median (25th, 75th percentile) change in plasma tHcy concentration at week 6 of − 0·9 ( − 1·6, 0·2) μmol, a change which, when compared to that observed in the placebo group 0·6 ( − 0·4, 1·9) μmol, approached statistical significance (P = 0·058). Choline supplementation at a dose of 1 g/d significantly increases the circulating concentration of free choline, and can also significantly increase the concentration of the methyl donor, betaine, thereby potentially enhancing the betaine–homocysteine methyltransferase-mediated remethylation of tHcy. This trial was registered at http://www.controlled-trials.com/ISRCTN82708510.
Natural Choline from Egg Yolk Phospholipids Is More Efficiently Absorbed Compared with Choline Bitartrate; Outcomes of A Randomized Trial in Healthy Adults
Choline is a vitamin-like essential nutrient, important throughout one’s lifespan. Therefore, choline salts are added to infant formula, supplements and functional foods. However, if choline is present in a natural form, e.g. bound to phospholipids, it may be more efficiently absorbed. The study’s aim was to evaluate if choline uptake is improved after consumption of an egg yolk phospholipid drink, containing 3 g of phospholipid bound choline, compared to a control drink with 3 g of choline bitartrate. We performed a randomized, double blind, cross-over trial with 18 participants. Plasma choline, betaine and dimethylglycine concentrations were determined before and up to six hours after consumption of the drinks. The plasma choline response, as determined by the incremental area under the curve, was four times higher after consumption of the egg yolk phospholipid drink compared with the control drink (p < 0.01). Similar outcomes were also observed for choline’s main metabolites, betaine (p < 0.01) and dimethylglycine (p = 0.01). Consumption of natural choline from egg yolk phospholipids improved choline absorption compared to consumption of chemically produced choline bitartrate. This information is of relevance for the food industry, instead of adding choline-salts, adding choline from egg yolk phospholipids can improve choline uptake and positively impact health.
Nicotinic Acetylcholine Receptors Containing the alpha7-Like Subunit Mediate Contractions of Muscles Responsible for Space Positioning of the Snail, Helix pomatia L. Tentacle
Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh) responses in muscles to determine the properties of the ACh receptor (AChR), the functional availability of which was assessed using isotonic contraction measurement. Using broad spectrum of nicotinic and muscarinic ligands, we provide the evidence that contractions in the muscles are attributable to the activation of nAChRs that contain the [alpha]7-like subunit. Contractions could be evoked by nicotine, carbachol, succinylchloride, TMA, the selective [alpha]7-nAChR agonist choline chloride, 3-Bromocytisine and PNU-282987, and blocked by nAChR selective antagonists such as mytolon, hexamethonium, succinylchloride, d-tubocurarine, hemicholinium, DMDA (decamethonium), methyllycaconitine, [alpha]-Bungarotoxin ([alpha]BgTx) and [alpha]-Conotoxin IMI. The specific muscarinic agonist oxotremorine and arecoline failed to elicit contractions. Based on these pharmacological properties we conclude that the Na.sup.+ and Ca.sup.2+ permeable AChRs of the flexor muscle are nicotinic receptors that contain the [alpha]7-like subunit. Immunodetection experiments confirmed the presence of [alpha]7- or [alpha]7-like AChRs in muscle cells, and [alpha]4-AChRs in nerves innervating the muscle. These results support the conclusion that the slowly desensitizing [alpha]BgTx-sensitive responses obtained from flexor muscles are produced by activation of [alpha]7- like AChRs. This is the first demonstration of postsynaptic expression and an obligatory role for a functional [alpha]7-like nAChR in the molluscan periphery.
Combined choline and DHA supplementation: a randomized controlled trial
Objective Choline and docosahexaenoic acid (DHA) are essential nutrients for preterm infant development. They are metabolically linked via phosphatidylcholine (PC), a constitutive plasma membrane lipid and the major transport form of DHA in plasma. Plasma choline and DHA-PC concentrations rapidly decline after preterm birth. To improve preterm infant nutrition, we evaluated combined compared to exclusive choline and DHA supplementation, and standard feeding. Design Randomized partially blinded single-center trial. Setting Neonatal tertiary referral center in Tübingen, Germany. Patients 24 inborn preterm infants < 32 week postmenstrual age. Interventions Standard nutrition (control) or, additionally, enteral choline (30 mg/kg/day), DHA (60 mg/kg/day), or both for 10 days. Single enteral administration of 3.6 mg/kg [methyl-D 9 -] choline chloride as a tracer at 7.5 days. Main outcome measures Primary outcome variable was plasma choline following 7 days of supplementation. Deuterated and unlabeled choline metabolites, DHA-PC, and other PC species were secondary outcome variables. Results Choline supplementation increased plasma choline to near-fetal concentrations [35.4 (32.8–41.7) µmol/L vs. 17.8 (16.1–22.4) µmol/L, p  < 0.01] and decreased D 9 -choline enrichment of PC. Single DHA treatment decreased DHA in PC relative to total lipid [66 (60–68)% vs. 78 (74–80)%; p  < 0.01], which was prevented by choline. DHA alone increased DHA-PC only by 35 (26–45)%, but combined treatment by 63 (49–74)% ( p  < 0.001). D 9 -choline enrichment showed preferential synthesis of PC containing linoleic acid. PC synthesis via phosphatidylethanolamine methylation resulted in preferential synthesis of DHA-containing D 3 -PC, which was increased by choline supplementation. Conclusions 30 mg/kg/day additional choline supplementation increases plasma choline to near-fetal concentrations, dilutes the D 9 -choline tracer via increased precursor concentrations and improves DHA homeostasis in preterm infants. Trial registration clinicaltrials.gov. Identifier: NCT02509728.
Choline Intake as Supplement or as a Component of Eggs Increases Plasma Choline and Reduces Interleukin-6 without Modifying Plasma Cholesterol in Participants with Metabolic Syndrome
Metabolic syndrome (MetS) is characterized by low-grade inflammation and insulin resistance, which increase the risk of heart disease. Eggs have numerous nutrients including choline, carotenoids, and fat-soluble vitamins that may protect against these conditions. Egg phosphatidylcholine (PC) is a major contributor of dietary choline in the American diet. However, uncertainty remains regarding eggs due to their high concentration of cholesterol. In this study, we evaluated the effect of two sources of choline, whole eggs (a source of PC) and a choline supplement (choline bitartrate, CB), on plasma lipids, glucose, insulin resistance, and inflammatory biomarkers. We recruited 23 subjects with MetS to participate in this randomized cross-over intervention. After a 2-week washout, with no choline intake, participants were randomly allocated to consume three eggs/day or CB (~400 mg choline/d for both) for 4 weeks. After a 3-week washout period, they were allocated to the alternate treatment. Dietary records indicated higher concentrations of vitamin E and selenium during the egg period (p < 0.01). Interestingly, there were no changes in plasma total, low density lipoprotein (LDL)- or high density lipoprotein (HDL)-cholesterol, triglycerides, or glucose, compared either to baseline or between treatments. In contrast, interleukin-6 was reduced, with both sources of choline compared to baseline, while eggs also had an effect on lowering C-reactive protein, insulin, and insulin resistance compared to baseline. This study demonstrates that in a MetS population, intake of three eggs per day does not increase plasma LDL cholesterol, and has additional benefits on biomarkers of disease compared to a choline supplement, possibly due to the presence of other antioxidants in eggs.
Choline Supplementation in Cystic Fibrosis—The Metabolic and Clinical Impact
Background: Choline is essential for the synthesis of liver phosphatidylcholine (PC), parenchymal maintenance, bile formation, and lipoprotein assembly to secrete triglycerides. In choline deficiency, the liver accretes choline/PC at the expense of lung tissue, thereby impairing pulmonary PC homoeostasis. In cystic fibrosis (CF), exocrine pancreas insufficiency results in impaired cleavage of bile PC and subsequent fecal choline loss. In these patients, the plasma choline concentration is low and correlates with lung function. We therefore investigated the effect of choline supplementation on plasma choline/PC concentration and metabolism, lung function, and liver fat. Methods: 10 adult male CF patients were recruited (11/2014–1/2016), and orally supplemented with 3 × 1 g choline chloride for 84 (84–91) days. Pre-/post-supplementation, patients were spiked with 3.6 mg/kg [methyl-D9]choline chloride to assess choline/PC metabolism. Mass spectrometry, spirometry, and hepatic nuclear resonance spectrometry served for analysis. Results: Supplementation increased plasma choline from 4.8 (4.1–6.2) µmol/L to 10.5 (8.5–15.5) µmol/L at d84 (p < 0.01). Whereas plasma PC concentration remained unchanged, D9-labeled PC was decreased (12.2 [10.5–18.3] µmol/L vs. 17.7 [15.5–22.4] µmol/L, p < 0.01), indicating D9-tracer dilution due to higher choline pools. Supplementation increased Forced Expiratory Volume in 1 second percent of predicted (ppFEV1) from 70.0 (50.9–74.8)% to 78.3 (60.1–83.9)% (p < 0.05), and decreased liver fat from 1.58 (0.37–8.82)% to 0.84 (0.56–1.17)% (p < 0.01). Plasma choline returned to baseline concentration within 60 h. Conclusions: Choline supplementation normalized plasma choline concentration and increased choline-containing PC precursor pools in adult CF patients. Improved lung function and decreased liver fat suggest that in CF correcting choline deficiency is clinically important. Choline supplementation of CF patients should be further investigated in randomized, placebo-controlled trials.
Dietary Choline Intake: Current State of Knowledge Across the Life Cycle
Choline, an essential dietary nutrient for humans, is required for the synthesis of the neurotransmitter, acetylcholine, the methyl group donor, betaine, and phospholipids; and therefore, choline is involved in a broad range of critical physiological functions across all stages of the life cycle. The current dietary recommendations for choline have been established as Adequate Intakes (AIs) for total choline; however, dietary choline is present in multiple different forms that are both water-soluble (e.g., free choline, phosphocholine, and glycerophosphocholine) and lipid-soluble (e.g., phosphatidylcholine and sphingomyelin). Interestingly, the different dietary choline forms consumed during infancy differ from those in adulthood. This can be explained by the primary food source, where the majority of choline present in human milk is in the water-soluble form, versus lipid-soluble forms for foods consumed later on. This review summarizes the current knowledge on dietary recommendations and assessment methods, and dietary choline intake from food sources across the life cycle.
Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme
Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic activity, which contributes to methanogenesis and human disease, has been known for over a century but has eluded genetic and biochemical characterization. We have identified a gene cluster responsible for anaerobic choline degradation within the genome of a sulfate-reducing bacterium and verified its function using both a genetic knockout strategy and heterologous expression in Escherichia coli . Bioinformatics and electron paramagnetic resonance (EPR) spectroscopy revealed the involvement of a C–N bond cleaving glycyl radical enzyme in TMA production, which is unprecedented chemistry for this enzyme family. Our discovery provides the predictive capabilities needed to identify choline utilization clusters in numerous bacterial genomes, underscoring the importance and prevalence of this metabolic activity within the human microbiota and the environment.
Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice
Patients with chronic kidney disease (CKD) have elevated circulating levels of trimethylamine N-oxide (TMAO), a metabolite derived from gut microbes and associated with cardiovascular diseases. High circulating levels of TMAO and its dietary precursor, choline, predict increased risk for development of CKD in apparently healthy subjects, and studies in mice fed TMAO or choline suggest that TMAO can contribute to kidney impairment and renal fibrosis. Here we examined the interactions between TMAO, kidney disease, and cardiovascular disease in mouse models. We observed that while female hyperlipidemic apoE KO mice fed a 0.2% adenine diet for 14 weeks developed CKD with elevated plasma levels of TMAO, provision of a non-lethal inhibitor of gut microbial trimethylamine (TMA) production, iodomethylcholine (IMC), significantly reduced multiple markers of renal injury (plasma creatinine, cystatin C, FGF23, and TMAO), reduced histopathologic evidence of fibrosis, and markedly attenuated development of microalbuminuria. In addition, while the adenine-induced CKD model significantly increased heart weight, a surrogate marker for myocardial hypertrophy, this was largely prevented by IMC supplementation. Surprisingly, adenine feeding did not increase atherosclerosis and significantly decreased the expression of inflammatory genes in the aorta compared to the control groups, effects unrelated to TMAO levels. Our data demonstrate that inhibition of TMAO production attenuated CKD development and cardiac hypertrophy in mice, suggesting that TMAO reduction may be a novel strategy in treating CKD and its cardiovascular disease complications.