Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
125 result(s) for "circulating tumor cell clusters"
Sort by:
Clusters of circulating tumor cells traverse capillary-sized vessels
Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-μm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis.
Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer
Purpose Circulating tumor cell (CTC) is a well-established prognosis predictor for metastatic breast cancer (MBC), and CTC-cluster exhibits significantly higher metastasis-promoting capability than individual CTCs. Because measurement of CTCs and CTC-clusters at a single time point may underestimate their prognostic values, we aimed to analyze longitudinally collected CTCs and CTC-clusters in MBC prognostication. Methods CTCs and CTC-clusters were enumerated in 370 longitudinally collected blood samples from 128 MBC patients. The associations between baseline, first follow-up, and longitudinal enumerations of CTCs and CTC-clusters with patient progression-free survival (PFS) and overall survival (OS) were analyzed using Cox proportional hazards models. Results CTC and CTC-cluster counts at both baseline and first follow-up were significantly associated with patient PFS and OS. Time-dependent analysis of longitudinally collected samples confirmed the significantly unfavorable PFS and OS in patients with ≥5 CTCs, and further demonstrated the independent prognostic values by CTC-clusters compared to CTC-enumeration alone. Longitudinal analyses also identified a link between the size of CTC-clusters and patient OS: compared to the patients without any CTC, those with 2-cell CTC-clusters and ≥3-cell CTC-clusters had a hazard ratio (HR) of 7.96 [95 % confidence level (CI) 2.00–31.61, P  = 0.003] and 14.50 (3.98–52.80, P  < 0.001), respectively. Conclusions In this novel time-dependent analysis of longitudinally collected CTCs and CTC-clusters, we showed that CTC-clusters added additional prognostic values to CTC enumeration alone, and a larger-size CTC-cluster conferred a higher risk of death in MBC patients.
Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer
The enumeration of circulating tumor cells (CTCs) provides important prognostic values in patients with metastatic breast cancer. Recent studies indicate that individual CTCs form clusters and these CTC-clusters play an important role in tumor metastasis. We aimed to assess whether quantification of CTC-clusters provides additional prognostic value over quantification of individual CTCs alone. In 115 prospectively enrolled advanced-stage (III and IV) breast cancer patients, CTCs and CTC-clusters were counted in 7.5 ml whole blood using the CellSearch ® system at baseline before first-line therapy. The individual and joint effects of CTC and CTC cluster counts on patients’ progression-free survival (PFS) were analyzed using Cox proportional hazards modeling. Of the 115 patients, 36 (31.3 %) had elevated baseline CTCs (≥5 CTCs/7.5 ml) and 20 (17.4 %) had CTC-clusters (≥2 CTCs/7.5 ml). Patients with elevated CTCs and CTC-clusters both had worse PFS with a hazard ratio (HR) of 2.76 [95 % confidence interval (CI) 1.57–4.86, P log-rank  = 0.0005] and 2.83 (1.48–5.39, P log-rank  = 0.001), respectively. In joint analysis, compared with patients with <5 CTCs and without CTC-clusters, patients with elevated CTCs but without clusters, and patients with elevated CTCs and with clusters, had an increasing trend of progression risk, with an HR of 2.21 (1.02–4.78) and 3.32 (1.68–6.55), respectively ( P log-rank  = 0.0006, P trend  = 0.0002). The additional prognostic value of CTC-clusters appeared to be more pronounced in patients with inflammatory breast cancer (IBC), the most aggressive form of breast cancer with the poorest survival. Baseline counts of both individual CTCs and CTC-clusters were associated with PFS in advanced-stage breast cancer patients. CTC-clusters might provide additional prognostic value compared with CTC enumeration alone, in patients with elevated CTCs.
Circulating Tumor Cell Clusters: United We Stand Divided We Fall
The presence of circulating tumor cells (CTCs) and CTC clusters, also known as tumor microemboli, in biological fluids has long been described. Intensive research on single CTCs has made a significant contribution in understanding tumor invasion, metastasis tropism, and intra-tumor heterogeneity. Moreover, their being minimally invasive biomarkers has positioned them for diagnosis, prognosis, and recurrence monitoring tools. Initially, CTC clusters were out of focus, but major recent advances in the knowledge of their biogenesis and dissemination reposition them as critical actors in the pathophysiology of cancer, especially metastasis. Increasing evidence suggests that “united” CTCs, organized in clusters, resist better and carry stronger metastatic capacities than “divided” single CTCs. This review gathers recent insight on CTC cluster origin and dissemination. We will focus on their distinct molecular package necessary to resist multiple cell deaths that all circulating cells normally face. We will describe the molecular basis of their increased metastatic potential as compared to single CTCs. We will consider their clinical relevance as prognostic biomarkers. Finally, we will propose future directions for research and clinical applications in this promising topic in cancer.
Bring along your friends: Homotypic and heterotypic circulating tumor cell clustering to accelerate metastasis
Metastasis formation is a hallmark of invasive cancers and it is achieved through the shedding of circulating tumor cells (CTCs) from the primary site into the blood circulation. There, CTCs are found as single cells or as multicellular clusters, with clusters carrying an elevated ability to survive within the bloodstream and initiate new metastatic lesions at distant sites. Clusters of CTCs include homotypic clusters made of cancer cells only, as well as heterotypic clusters that incorporate stromal or immune cells along with cancer cells. Both homotypic and heterotypic CTC clusters are characterized by a high metastasis-forming capability, high proliferation rate and by distinct molecular features compared to single CTCs, and their presence in the peripheral circulation of cancer patients is generally associated with a poor prognosis. In this short review, we summarize the current literature that describes homotypic and heterotypic CTC clusters, both in the context of their molecular characteristics as well as their value in the clinical setting. While CTC clusters have only recently emerged as key players in the metastatic process and many aspects of their biology remain to be investigated, a detailed understanding of their vulnerabilities may pave the way towards the generation of new metastasis-suppressing agents.
Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review)
Numerous studies over the past two decades have focused on the epithelial-to-mesenchymal transition (EMT) and its role in the development of metastasis. Certain studies highlighted the importance of EMT in the dissemination of tumor cells and metastasis of epithelium-derived carcinomas. Tumor metastasis is a multistep process during which tumor cells change their morphology, and start to migrate and invade distant sites. The present review discusses the current understanding of the molecular mechanisms contributing to EMT in embryogenesis, fibrosis and tumorigenesis. Additionally, the signaling pathways that initiate EMT through transcriptional factors responsible for the activation and suppression of various genes associated with cancer cell migration were investigated. Furthermore, the important role of the epigenetic modifications that regulate EMT and the reverse process, mesenchymal-to-epithelial transition (MET) are discussed. MicroRNAs are key regulators of various intracellular processes and current knowledge of EMT has significantly improved due to microRNA characterization. Their effect on signaling pathways and the ensuing events that occur during EMT at the molecular level is becoming increasingly recognized. The current review also highlights the role of circulating tumor cells (CTCs) and CTC clusters, and their ability to form metastases. In addition, the biological properties of different types of circulating cells based on their tumor-forming potential are compared.
Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer
The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial–mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.
Circulating Tumor Cell Clusters Are Frequently Detected in Women with Early-Stage Breast Cancer
The clinical relevance of circulating tumor cell clusters (CTC-clusters) in breast cancer (BC) has been mostly studied using the CellSearch®, a marker-dependent method detecting only epithelial-enriched clusters. However, due to epithelial-to-mesenchymal transition, resorting to marker-independent approaches can improve CTC-cluster detection. Blood samples collected from healthy donors and spiked-in with tumor mammospheres, or from BC patients, were processed for CTC-cluster detection with 3 technologies: CellSearch®, CellSieve™ filters, and ScreenCell® filters. In spiked-in samples, the 3 technologies showed similar recovery capability, whereas, in 19 clinical samples processed in parallel with CellSearch® and CellSieve™ filters, filtration allowed us to detect more CTC-clusters than CellSearch® (median number = 7 versus 1, p = 0.0038). Next, samples from 37 early BC (EBC) and 23 metastatic BC (MBC) patients were processed using ScreenCell® filters for attaining both unbiased enrichment and marker-independent identification (based on cytomorphological criteria). At baseline, CTC-clusters were detected in 70% of EBC cases and in 20% of MBC patients (median number = 2, range 0–20, versus 0, range 0–15, p = 0.0015). Marker-independent approaches for CTC-cluster assessment improve detection and show that CTC-clusters are more frequent in EBC than in MBC patients, a novel finding suggesting that dissemination of CTC-clusters is an early event in BC natural history.
Alone you go faster, together you go farther
The metastatic process is an extraordinarily complex step‐by‐step procedure, characterized by many analogies with migratory patterns of humans or animals across our planet. The ongoing interrogation of circulating tumor cells (CTCs), caught in the act of spreading from one location to another, is revealing distinct behaviors including biological, physical, and mechanical features that impact on their likelihood to form metastasis. In this viewpoint, I will discuss some of these findings and provide a perspective on the metastatic journey, open questions and opportunities to exploit some of the most recent discoveries for the development of antimetastasis medicines. Metastasis is how most cancers kill. During the metastatic cascade, cancer cells acquire different properties that influence their likelihood to succeed. In this viewpoint, I summarize some of my views on metastasis‐relevant phenomena, challenges, open questions and opportunities for intervention.
CTC clusters in cancer progression and metastasis
Circulating tumor cells (CTC) in the blood of cancer patients are regarded as potential metastatic seeds, and their detailed characterization holds great promises for more exact prognosis, better diagnosis and therapy of the metastatic cancer. Circulating tumor cell clusters represent different class of CTCs, with specific properties, including high metastatic potential. In this review, we present current opinions on differences between single CTCs and CTC clusters, their mode of dissemination, methods of detection and clinical importance in various types of cancer.