Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
430,781 result(s) for "cloud computing"
Sort by:
Cloud computing
An \"overview of the implications of the cloud phenomenon and the opportunities and risks associated with it\"-- Provided by publisher.
Terahertz topological photonics for on-chip communication
The realization of integrated, low-cost and efficient solutions for high-speed, on-chip communication requires terahertz-frequency waveguides and has great potential for information and communication technologies, including sixth-generation (6G) wireless communication, terahertz integrated circuits, and interconnects for intrachip and interchip communication. However, conventional approaches to terahertz waveguiding suffer from sensitivity to defects and sharp bends. Here, building on the topological phase of light, we experimentally demonstrate robust terahertz topological valley transport through several sharp bends on the all-silicon chip. The valley kink states are excellent information carriers owing to their robustness, single-mode propagation and linear dispersion. By leveraging such states, we demonstrate error-free communication through a highly twisted domain wall at an unprecedented data transfer rate (exceeding ten gigabits per second) that enables real-time transmission of uncompressed 4K high-definition video (that is, with a horizontal display resolution of approximately 4,000 pixels). Terahertz communication with topological devices opens a route towards terabit-per-second datalinks that could enable artificial intelligence and cloud-based technologies, including autonomous driving, healthcare, precision manufacturing and holographic communication.Robust terahertz wave transport is demonstrated on a silicon chip using the valley Hall topological phase. Error-free communication is achieved at a data rate of 11 Gbit s−1, enabling real-time transmission of uncompressed 4K high-definition video.
Parallel convolutional processing using an integrated photonic tensor core
With the proliferation of ultrahigh-speed mobile networks and internet-connected devices, along with the rise of artificial intelligence (AI) 1 , the world is generating exponentially increasing amounts of data that need to be processed in a fast and efficient way. Highly parallelized, fast and scalable hardware is therefore becoming progressively more important 2 . Here we demonstrate a computationally specific integrated photonic hardware accelerator (tensor core) that is capable of operating at speeds of trillions of multiply-accumulate operations per second (10 12 MAC operations per second or tera-MACs per second). The tensor core can be considered as the optical analogue of an application-specific integrated circuit (ASIC). It achieves parallelized photonic in-memory computing using phase-change-material memory arrays and photonic chip-based optical frequency combs (soliton microcombs 3 ). The computation is reduced to measuring the optical transmission of reconfigurable and non-resonant passive components and can operate at a bandwidth exceeding 14 gigahertz, limited only by the speed of the modulators and photodetectors. Given recent advances in hybrid integration of soliton microcombs at microwave line rates 3 – 5 , ultralow-loss silicon nitride waveguides 6 , 7 , and high-speed on-chip detectors and modulators, our approach provides a path towards full complementary metal–oxide–semiconductor (CMOS) wafer-scale integration of the photonic tensor core. Although we focus on convolutional processing, more generally our results indicate the potential of integrated photonics for parallel, fast, and efficient computational hardware in data-heavy AI applications such as autonomous driving, live video processing, and next-generation cloud computing services. An integrated photonic processor, based on phase-change-material memory arrays and chip-based optical frequency combs, which can operate at speeds of trillions of multiply-accumulate (MAC) operations per second, is demonstrated.
Genomics: data sharing needs an international code of conduct
Efforts to protect people’s privacy in a massive international cancer project offer lessons for data sharing. Efforts to protect people’s privacy in a massive international cancer project offer lessons for data sharing. Coloured scanning electron micrograph of a migrating breast cancer cell
IoT transaction processing through cooperative concurrency control on fog–cloud computing environment
In cloud–fog environments, the opportunity to avoid using the upstream communication channel from the clients to the cloud server all the time is possible by fluctuating the conventional concurrency control protocols. Through the present paper, the researcher aimed to introduce a new variant of the optimistic concurrency control protocol. Through the deployment of augmented partial validation protocol, IoT transactions that are read-only can be processed at the fog node locally. For final validation, update transactions are the only ones sent to the cloud. Moreover, the update transactions go through partial validation at the fog node which makes them more opportunist to commit at the cloud. This protocol reduces communication and computation at the cloud as much as possible while supporting scalability of the transactional services needed by the applications running in such environments. Based on numerical studies, the researcher assessed the partial validation procedure under three concurrency protocols. The study’s results indicate that employing the proposed mechanism shall generate benefits for IoT users. These benefits are obtained from transactional services. We evaluated the effect of deployment the partial validation at the fog node for the three concurrency protocols, namely AOCCRBSC, AOCCRB and STUBcast. We performed a set of intensive experiments to compare the three protocols with and without such deployment. The result reported a reduction in miss rate, restart rate and communication delay in all of them. The researcher found that the proposed mechanism reduces the communication delay significantly. They found that the proposed mechanism shall enable low-latency fog computing services of the IoT applications that are a delay sensitive.
A Strategic Value Appropriation Path for Cloud Computing
Cloud-based information management is one of the leading competitive differentiation strategies for firms. With the increasing criticality of information management in value creation and process support, establishing an integrated capability with cloud computing is vital for organizational success in the changing landscape of business competition. These issues have received scant attention, however. We draw on the resource-based view, dynamic capability hierarchy concepts, and the perspective of operand and operant resources to suggest a cloud value appropriation model for firms. We argue that, to appropriate business value from cloud computing, the firm needs to effectively deploy cloud computing and leverage cloud operant resources as firm capabilities in a hierarchical fashion toward the development of cloud computing-based service models in order to reliably achieve the desired business outcomes. We propose a model encompassing the principles of infrastructure and cloud platform deployment, integration and service orientation, and alignment with business processes that explain the linkage from cloud computing to firm performance. We test this approach to value creation with a cloud computing implementation assessment model using a sample of 147 firms that have implemented cloud computing in India. Our analysis uncovers a strategic value appropriation path from cloud technological capability to firm performance via cloud integration capability, cloud service portfolio capability, and business flexibility. This research offers new insights regarding the underlying mechanisms for how cloud computing affects firm performance via cloud-enabled capabilities and the business functions that are supported by cloud capabilities.