Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,620 result(s) for "cocktails"
Sort by:
Bartending for dummies
Make drinks like a master mixologist with 1, 000 recipes Bartenders are the life of the party—and it's never been easier to prepare and serve drinks that keep partygoers coming back for more! Whether you want to break into professional bartending or up your ante as a home mixologist, this clear, easy-to-follow guide has you covered. With tips on stocking your bar and working with the right tools and garnishes, as well as information on the latest liquor trends and popular new cocktails, it won't be long before you hear, \"Bartender, may I have another?\" * Concoct the perfect timeless and modern drinks * Learn how to create perfect low and no-alcohol options * Replicate everyone's favorite ready-to-drink cocktails * Stock your bar with the best glasses and tools If you're looking for fresh ideas to keep your friends or customers happy, Bartending For Dummies is the perfect how-to resource for making a splash with great drinks.
Current challenges and future opportunities of phage therapy
ABSTRACT Antibiotic resistance is a major public health challenge worldwide, whose implications for global health might be devastating if novel antibacterial strategies are not quickly developed. As natural predators of bacteria, (bacterio)phages may play an essential role in escaping such a dreadful future. The rising problem of antibiotic resistance has revived the interest in phage therapy and important developments have been achieved over the last years. But where do we stand today and what can we expect from phage therapy in the future? This is the question we set to answer in this review. Here, we scour the outcomes of human phage therapy clinical trials and case reports, and address the major barriers that stand in the way of using phages in clinical settings. We particularly address the potential of phage resistance to hinder phage therapy and discuss future avenues to explore the full capacity of phage therapy. There is a remarkable potential of phage therapy for the control of antibiotic resistant infections within the One Health approach, thus, the challenges currently faced and the potential solutions in development must be considered.
Phage Resistance in Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations That Culminate in Impaired Adsorption
The therapeutic use of bacteriophage (phage) is garnering renewed interest in the setting of difficult-to-treat infections. Phage resistance is one major limitation of phage therapy; therefore, developing effective strategies to avert or lessen its impact is critical. Characterization of in vitro phage resistance may be an important first step in evaluating the relative likelihood with which phage-resistant populations emerge, the most likely phenotypes of resistant mutants, and the effect of certain phage cocktail combinations in increasing or decreasing the genetic barrier to resistance. If this information confers predictive power in vivo , then routine studies of phage-resistant mutants and their in vitro evolution should be a valuable means for improving the safety and efficacy of phage therapy in humans. The evolution of phage resistance poses an inevitable threat to the efficacy of phage therapy. The strategic selection of phage combinations that impose high genetic barriers to resistance and/or high compensatory fitness costs may mitigate this threat. However, for such a strategy to be effective, the evolution of phage resistance must be sufficiently constrained to be consistent. In this study, we isolated lytic phages capable of infecting a modified Klebsiella pneumoniae clinical isolate and characterized a total of 57 phage-resistant mutants that evolved from their prolonged coculture in vitro . Single- and double-phage-resistant mutants were isolated from independently evolved replicate cocultures grown in broth or on plates. Among resistant isolates evolved against the same phage under the same conditions, mutations conferring resistance occurred in different genes, yet in each case, the putative functions of these genes clustered around the synthesis or assembly of specific cell surface structures. All resistant mutants demonstrated impaired phage adsorption, providing a strong indication that these cell surface structures functioned as phage receptors. Combinations of phages targeting different host receptors reduced the incidence of resistance, while, conversely, one three-phage cocktail containing two phages targeting the same receptor increased the incidence of resistance (relative to its two-phage, nonredundant receptor-targeting counterpart). Together, these data suggest that laboratory characterization of phage-resistant mutants is a useful tool to help optimize therapeutic phage selection and cocktail design. IMPORTANCE The therapeutic use of bacteriophage (phage) is garnering renewed interest in the setting of difficult-to-treat infections. Phage resistance is one major limitation of phage therapy; therefore, developing effective strategies to avert or lessen its impact is critical. Characterization of in vitro phage resistance may be an important first step in evaluating the relative likelihood with which phage-resistant populations emerge, the most likely phenotypes of resistant mutants, and the effect of certain phage cocktail combinations in increasing or decreasing the genetic barrier to resistance. If this information confers predictive power in vivo , then routine studies of phage-resistant mutants and their in vitro evolution should be a valuable means for improving the safety and efficacy of phage therapy in humans.
Prediction of multidimensional drug dose responses based on measurements of drug pairs
Finding potent multidrug combinations against cancer and infections is a pressing therapeutic challenge; however, screening all combinations is difficult because the number of experiments grows exponentially with the number of drugs and doses. To address this, we present a mathematical model that predicts the effects of three or more antibiotics or anticancer drugs at all doses based only on measurements of drug pairs at a few doses, without need for mechanistic information. The model provides accurate predictions on available data for antibiotic combinations, and on experiments presented here on the response matrix of three cancer drugs at eight doses per drug. This approach offers a way to search for effective multidrug combinations using a small number of experiments.
Cellulases: From Lignocellulosic Biomass to Improved Production
Cellulases are enzymes that are attracting worldwide attention because of their ability to degrade cellulose in the lignocellulosic biomass and transform it into highly demanded bioethanol. The enzymatic hydrolysis of cellulose by cellulases into fermentable sugars is a crucial step in biofuel production, given the complex structure of lignocellulose. Due to cellulases’ unique ability to hydrolyze the very recaltricant nature of lignocellulosic biomass, the cellulase market demand is rapidly growing. Although cellulases have been used in industrial applications for decades, constant effort is being made in the field of enzyme innovation to develop cellulase mixtures/cocktails with improved performance. Given that the main producers of cellulases are of microbial origin, there is a constant need to isolate new microorganisms as potential producers of enzymes important for biofuel production. This review provides insight into current research on improving microbial cellulase production as well as the outlook for the cellulase market with commercial cellulase preparation involved in industrial bioethanol production.
Phage Therapy: What Have We Learned?
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro
Angiogenesis is a complex morphogenetic process whereby endothelial cells from existing vessels invade as multicellular sprouts to form new vessels. Here, we have engineered a unique organotypic model of angiogenic sprouting and neovessel formation that originates from preformed artificial vessels fully encapsulated within a 3D extracellular matrix. Using this model, we screened the effects of angiogenic factors and identified two distinct cocktails that promoted robust multicellular endothelial sprouting. The angiogenic sprouts in our system exhibited hallmark structural features of in vivo angiogenesis, including directed invasion of leading cells that developed filopodia-like protrusions characteristic of tip cells, following stalk cells exhibiting apical–basal polarity, and lumens and branches connecting back to the parent vessels. Ultimately, sprouts bridged between preformed channels and formed perfusable neovessels. Using this model, we investigated the effects of angiogenic inhibitors on sprouting morphogenesis. Interestingly, the ability of VEGF receptor 2 inhibition to antagonize filopodia formation in tip cells was context-dependent, suggesting a mechanism by which vessels might be able to toggle between VEGF-dependent and VEGF-independent modes of angiogenesis. Like VEGF, sphingosine-1-phosphate also seemed to exert its proangiogenic effects by stimulating directional filopodial extension, whereas matrix metalloproteinase inhibitors prevented sprout extension but had no impact on filopodial formation. Together, these results demonstrate an in vitro 3D biomimetic model that reconstitutes the morphogenetic steps of angiogenic sprouting and highlight the potential utility of the model to elucidate the molecular mechanisms that coordinate the complex series of events involved in neovascularization.