Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "cocoa bean shell"
Sort by:
From Waste to Biocatalyst: Cocoa Bean Shells as Immobilization Support and Substrate Source in Lipase-Catalyzed Hydrolysis
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized systems were prepared using organic (CBS), inorganic (silica), and hybrid (CBS–silica) supports via physical adsorption or covalent binding. Among them, the covalently immobilized enzyme on CBS (ORG-CB) showed the most balanced performance, achieving a catalytic efficiency (Ke) of 0.063 mM−1·min−1 (18.6% of the free enzyme), broad pH–temperature tolerance, and over 50% activity retention after eight reuse cycles. Thermodynamic analysis confirmed enhanced thermal resistance for ORG-CB (Ed = 32.3 kJ mol−1; ΔH‡ = 29.7 kJ mol−1), while kinetic evaluation revealed that its thermal deactivation occurred faster than for the free enzyme under prolonged heating. In application trials, ORG-CB reached 60.1% FFA conversion from CBS oil, outperforming the free enzyme (49.9%). These findings validate CBS as a dual-function material for enzyme immobilization and valorization of agro-industrial waste. The results also reinforce the impact of immobilization chemistry and support composition on the operational and thermal performance of biocatalysts, contributing to the advancement of green chemistry strategies in enzyme-based processing.
Cocoa bean shell: a by-product with high potential for nutritional and biotechnological applications
Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry. This residual biomass could be an interesting source of nutrients and bioactive compounds due to its high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials. Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the research on obtaining and characterising different compounds of interest from CBS, some works have focused on the employment of novel sustainable extraction methods and others on the possible use of the whole CBS or some derived products. This review provides insight into the different alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the biotechnological application of this interesting and underused by-product.
Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin
The present study focused on the application of pulsed electric fields (PEF) as an innovative pre-treatment technique to improve the recovery of polyphenols from two food by-products, cocoa bean shell (CBS) and coffee silver skin (CS). The effect of the different operating parameters on the extraction of polyphenols was optimised using the response surface methodology statistical approach. The optimised methodology was compared with conventional extraction and applied to several CBS and CS samples to classify the samples according to origin, variety and industrial treatment. PEF-assisted extraction had higher (approximately 20%) recovery yields of polyphenols and methylxanthines than conventional extraction. Finally, the results highlighted that the composition of bioactive compounds from different extracts of CBS and CS and their antioxidant properties depended on the origin, variety and industrial processing of the raw material. These by-products may be a promising source of natural compounds, with potential applications on food and health sectors.
Development and Characterization of a 3D Printed Cocoa Bean Shell Filled Recycled Polypropylene for Sustainable Composites
Natural filler-based composites are an environmentally friendly and potentially sustainable alternative to synthetic or plastic counterparts. Recycling polymers and using agro-industrial wastes are measures that help to achieve a circular economy. Thus, this work presents the development and characterization of a 3D printing filament based on recycled polypropylene and cocoa bean shells, which has not been explored yet. The obtained composites were thermally and physically characterized. In addition, the warping effect, mechanical, and morphological analyses were performed on 3D printed specimens. Thermal analysis exhibited decreased thermal stability when cacao bean shell (CBS) particles were added due to their lignocellulosic content. A reduction in both melting enthalpy and crystallinity percentage was identified. This is caused by the increase in the amorphous structures present in the hemicellulose and lignin of the CBS. Mechanical tests showed high dependence of the mechanical properties on the 3D printing raster angle. Tensile strength increased when a raster angle of 0° was used, compared to specimens printed at 90°, due to the load direction. Tensile strength and fracture strain were improved with CBS addition in specimens printed at 90°, and better bonding between adjacent layers was achieved. Electron microscope images identified particle fracture, filler-matrix debonding, and matrix breakage as the central failure mechanisms. These failure mechanisms are attributed to the poor interfacial bonding between the CBS particles and the matrix, which reduced the tensile properties of specimens printed at 0°. On the other hand, the printing process showed that cocoa bean shell particles reduced by 67% the characteristic warping effect of recycled polypropylene during 3D printing, which is advantageous for 3D printing applications of the rPP. Thereby, potential sustainable natural filler composite filaments for 3D printing applications with low density and low cost can be developed, adding value to agro-industrial and plastic wastes.
Evaluation of Cocoa Beans Shell Powder as a Bioadsorbent of Congo Red Dye Aqueous Solutions
The use of synthetic dyes in the textile, leather, and paper industries is a source of groundwater pollution around the world. There are different methods for the treatment of wastewater that has been contaminated with dyes, among which adsorption with agro-industrial wastes is gaining relevance. In the present study, the adsorption capacity of cocoa bean shell powder was evaluated when it was used as a bioadsorbent for Congo red dye in an aqueous medium. A 24 central factorial design with central and axial points was proposed to determine the adsorption capacity. The factors that were studied were the adsorbent (0.06–0.15 g), Congo red (40–120 mg L−1), pH (3–11), and time (4–36 h). The bioadsorbent was characterized through scanning electron microscopy and Fourier-transform infrared spectroscopy. The effects of the factors on the adsorption capacity for Congo red using cocoa bean shell were nonlinear, and they were modeled with a second-order polynomial (p < 0.05) and with an R2 of 0.84. The bioadsorbent obtained a maximum adsorption of 89.96% in runs. The process of optimization by using the surface response allowed the maximization of the adsorption, and the validation showed that 95.79% adsorption of the dye was obtained.
Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by RP-HPLC-PDA Analysis and Spectrophotometric Assays
The cocoa bean shell (CBS), a byproduct from the cocoa industry, was recently proposed as a functional and low-cost ingredient, mainly because of its content in polyphenols. However, vegetal food products could significantly differ in their chemical composition depending on different factors such as their geographical provenience. This work is aimed to determine the polyphenolic and methylxanthine profile of different CBS samples and utilize it for achieving their differentiation according to their geographical origin and variety. RP-HPLC-PDA was used to determine the CBS polyphenolic profile. Spectrophotometric assays were used to obtain the total phenolic, flavonoid, and tannin contents, as well as to evaluate their radical scavenging activity. The results obtained from both methods were then compared and used for the CBS differentiation according to their origin and varieties through chemometric analysis. RP-HPLC-PDA allowed to determine 25 polyphenolic compounds, as well as the methylxanthines theobromine and caffeine. Polyphenolic profile results highlighted significant differences among the analyzed samples, allowing for their differentiation based on their geographical provenience. Similar results were achieved with the results of the spectrophotometric assays, considered as screening methods. Differentiation based on CBS variety was instead obtained based on the HPLC-determined methylxanthine profile.
Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties
In this work, pectin-based active films with a cocoa bean shell extract, obtained after waste valorisation of residues coming from the chocolate production process, and zinc oxide/zinc nanoparticles (ZnO/Zn-NPs) at different concentrations, were obtained by casting. The effect of the active additive incorporation on the thermal, barrier, structural, morphological and optical properties was investigated. Moreover, the photocatalytic properties of the obtained films based on the decomposition of methylene blue (MB) in aqueous solution at room temperature were also studied. A significant increase in thermal and oxidative stability was obtained with the incorporation of 3 wt% of ZnO/Zn-NPs compared to the control film. The addition of 5 wt% cocoa bean shell extract to pectin significantly affected the oxygen barrier properties due to a plasticizing effect. In contrast, the addition of ZnO/Zn-NPs at 1 wt% to pectin caused a decrease in oxygen transmission rate per film thickness (OTR.e) values of approximately 50% compared to the control film, resulting in an enhanced protection against oxidation for food preservation. The optical properties were highly influenced by the incorporation of the natural extract but this effect was mitigated when nanoparticles were also incorporated into pectin-based films. The addition of the extract and nanoparticles resulted in a clear improvement (by 98%) in UV barrier properties, which could be important for packaged food sensitive to UV radiation. Finally, the photocatalytic activity of the developed films containing nanoparticles was demonstrated, showing photodegradation efficiency values of nearly 90% after 60 min at 3 wt% of ZnO/Zn-NPs loading. In conclusion, the obtained pectin-based bionanocomposites with cocoa bean shell waste extract and zinc oxide/zinc nanoparticles showed great potential to be used as active packaging for food preservation.
Bioactive Poly(lactic acid)–Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization
The unique lignocellulosic and solvent-extractive chemical constituents of most natural fibers are rich in natural polymers and bioactive molecules that can be exploited for biomaterial formulation. However, although natural fibers’ main constituents have been already incorporated as material reinforcement and improve surface bioactivity of polymeric materials, the use of the whole natural fibers as bioactive fillers remains largely unexplored. Thus, we put forward the formulation of natural fiber filling and functionalization of biomaterials by studying the chemical composition of cocoa bean shells (CBS) and proposing the fabrication and characterization of polylactic acid (PLA) and CBS-based composite by solvent-casting. As was expected from previous studies of agro-industrial wastes, the main components of CBS were to cellulose (42.23 wt.%), lignin (22.68 wt.%), hemicellulose (14.73 wt.%), and solvent extractives (14.42 wt.%). Structural analysis (FTIR) confirms the absence of covalent bonding between materials. Thermal degradation profiles (DSC and TGA) showed similar mass losses and thermal-reaction profiles for lignocellulosic-fibers-based composites. The mechanical behavior of the PLA/CBS composite shows a stiffer material behavior than the pristine material. The cell viability of Vero cells in the presence of the composites was above 94%, and the hemolytic tendency was below 5%, while platelet aggregation increased up to 40%. Antioxidant activity was confirmed with comparable 2,2-diphe-277 nyl-1-picryl-hydrazyl-hydrate (DPPH) free-radical scavenging than Vitamin C even for PLA/CBS composite. Therefore, the present study elucidates the significant promise of CBS for bioactive functionalization in biomaterial-engineering, as the tested composite exhibited high biocompatibility and strong antioxidant activity and might induce angiogenic factors’ release. Moreover, we present an eco-friendly alternative to taking advantage of chocolate-industry by-products.
Green Extraction Methods for Active Compounds from Food Waste—Cocoa Bean Shell
This is the first report on the extraction of cocoa bean shell (CBS) using deep eutectic solvents (DESs). Screening results with 16 different choline chloride-based DESs showed how choline chloride:oxalic acid DES was the most suitable solvent for the extraction of the bioactive compounds from CBS and that concentrations varied greatly depending on the used solvent. The DES extraction was compared to the DESs coupled with microwave extraction (MAE), and the yields of the extracted compounds were higher for DES/MAE. For theobromine, the obtained yields for DES extraction were 2.145–4.682 mg/g, and for caffeine, were 0.681–1.524 mg/g, whereas for DES/MAE, the same compounds were obtained in 2.502–5.004 mg/g and 0.778–1.599 mg/g. Antioxidant activity was also determined, using DPPH method, obtaining 24.027–74.805% activity for DES extraction and 11.751–55.444% for DES/MAE. Water content significantly influenced the extraction of targeted active compounds from CBS, whereas extraction time and temperature did not show statistically significant influence. The extraction temperature only influenced antioxidant activity. The study demonstrated how extraction using DES and microwaves could be of a great importance in the future trends of green chemistry for the production of CBS extracts rich in bioactive compounds.
Evaluation of liquid smoke of cocoa bean shell against Escherichia coli and Candida utilis
Cocoa bean shells are one of the by-products produced from chocolate processing. The cocoa bean shells contain polyphenols approximately 5.8%. The study aimed to evaluate the effectivity of liquid smoke produced from cocoa bean shells against Escherichia coli and Candida utilis It is expected that liquid smoke from cocoa bean shells will have the opportunity to replace AGPs. Total phenol, saponin, and tannin compounds were analyzed and were made in three replications. To determine the inhibition of liquid smoke of cocoa bean shells (LSCBS) on E. coli and C. utilis , the diameter of the clear area on the media was measured using a ruler. The antibacterial and antifungal activity test was carried out by well diffusion methods. Ten treatments, i.e. different concentrations of the LSCBS (0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%/non-diluted), each with four replications were performed, and the growth of the E. coli and C. utilis was observed. Statistical analysis was conducted using a completely randomized design. The results showed total phenol content was 0.17 g/100mL, saponin 0.46 g/100mL, and tannin 0.047 g/100mL in LSCBS. The antibacterial activity with a 10-100% concentration of LSCBS did not show zona inhibition (clear zone) against E. coli . Likewise, antifungal activity with a 10-100% concentration of LSCBS did not show zona inhibition against C. utilis . Not all liquid smoke from plant by-products inhibits bacterial growth. This research showed that the liquid smoke from the cocoa bean shells did not affect the growth of Escherichia coli and Candida utilis in vitro , the possible cause was the very low content of total phenols, saponins, and tannins It means liquid smoke from cocoa bean shells could not replace AGPs.