Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
86,348
result(s) for
"comparative method"
Sort by:
evolution of self-control
by
Josep Call
,
Carel P. van Schaik
,
Elsa Addessi
in
Animal cognition
,
Animals
,
Biological Evolution
2014
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.
Journal Article
The comparative method
2014
Charles C. Ragin's The Comparative Method proposes a synthetic strategy, based on an application of Boolean algebra, that combines the strengths of both qualitative and quantitative sociology. Elegantly accessible and germane to the work of all the social sciences, and now updated with a new introduction, this book will continue to garner interest, debate, and praise.
TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE
by
Ives, Anthony R.
,
Blomberg, Simon P.
,
Garland JR, Theodore
in
Adaptation
,
behavior
,
body size
2003
The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous‐valued characters that can be implemented with either phylogenetically independent contrasts or generalized least‐squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal α= 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch‐length transformations, one based on the Ornstein‐Uhlenbeck (OU) model of stabilizing selection, the other based on a new model in which character evolution can accelerate or decelerate (ACDC) in rate (e.g., as may occur during or after an adaptive radiation). Maximum likelihood estimation of the OU (d) and ACDC (g) parameters can serve as tests for phylogenetic signal because an estimate of d or g near zero implies that a phylogeny with little hierarchical structure (a star) offers a good fit to the data. Transformations that improve the fit of a tree to comparative data will increase power to detect phylogenetic signal and may also be preferable for further comparative analyses, such as of correlated character evolution. Application of the methods to data from the literature revealed that, for trees with 20 or more species, 92% of traits exhibited significant phylogenetic signal (randomization test), including behavioral and ecological ones that are thought to be relatively evolutionarily malleable (e.g., highly adaptive) and/or subject to relatively strong environmental (nongenetic) effects or high levels of measurement error. Irrespective of sample size, most traits (but not body size, on average) showed less signal than expected given the topology, branch lengths, and a Brownian motion model of evolution (i.e., K was less than one), which may be attributed to adaptation and/or measurement error in the broad sense (including errors in estimates of phenotypes, branch lengths, and topology). Analysis of variance of log K for all 121 traits (from 35 trees) indicated that behavioral traits exhibit lower signal than body size, morphological, life‐history, or physiological traits. In addition, physiological traits (corrected for body size) showed less signal than did body size itself. For trees with 20 or more species, the estimated OU (25% of traits) and/or ACDC (40%) transformation parameter differed significantly from both zero and unity, indicating that a hierarchical tree with less (or occasionally more) structure than the original better fit the data and so could be preferred for comparative analyses.
Journal Article
HOW LIZARDS TURN INTO SNAKES: A PHYLOGENETIC ANALYSIS OF BODY-FORM EVOLUTION IN ANGUID LIZARDS
2001
One of the most striking morphological transformations in vertebrate evolution is the transition from a lizardlike body form to an elongate, limbless (snakelike) body form. Despite its dramatic nature, this transition has occurred repeatedly among closely related species (especially in squamate reptiles), making it an excellent system for studying macroevolutionary transformations in body plan. In this paper, we examine the evolution of body form in the lizard family Anguidae, a clade in which multiple independent losses of limbs have occurred. We combine a molecular phylogeny for 27 species, our morphometric data, and phylogenetic comparative methods to provide the first statistical phylogenetic tests of several long‐standing hypotheses for the evolution of snakelike body form. Our results confirm the hypothesized relationships between body elongation and limb reduction and between limb reduction and digit reduction. However, we find no support for the hypothesized sequence going from body elongation to limb reduction to digit loss, and we show that a burrowing lifestyle is not a necessary correlate of limb loss. We also show that similar degrees of overall body elongation are achieved in two different ways in anguids, that these different modes of elongation are associated with different habitat preferences, and that this dichotomy in body plan and ecology is widespread in limb‐reduced squamates. Finally, a recent developmental study has proposed that the transition from lizardlike to snakelike body form involves changes in the expression domains of midbody Hox genes, changes that would link elongation and limb loss and might cause sudden transformations in body form. Our results reject this developmental model and suggest that this transition involves gradual changes occurring over relatively long time scales.
Journal Article
The art and craft of comparison
\"Is it possible to compare French presidential politics with village leadership in rural India? Most social scientists - even those of opposing methodological and philosophical persuasions - are united in thinking such unlikely juxtapositions are not feasible. We think they are. To explain why and how, The Art of Comparison is a call to arms for interpretivists to embrace creatively comparative work. Initial chapters explain, defend and illustrate the comparative interpretive approach. But it is also an engaging, hands-on guide to doing comparative interpretive research. The chapters cover design, fieldwork, analysis and writing. The advice in each revolves around 'rules of thumb', grounded in experience, and illustrated through stories and examples from our own research in different contexts around the world\"-- Provided by publisher.
Coevolution between MHC Class I and Antigen-Processing Genes in Salamanders
by
Jockusch, Elizabeth
,
Jelić, Dušan
,
Wielstra, Ben
in
Adaptive immunity
,
Animals
,
Antigen Presentation - genetics
2021
Abstract
Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs.
Journal Article