Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "complex-valued SAR data interpolation"
Sort by:
Interpolation Methods with Phase Control for Backprojection of Complex-Valued SAR Data
Time-domain backprojection algorithms are widely used in state-of-the-art synthetic aperture radar (SAR) imaging systems that are designed for applications where motion error compensation is required. These algorithms include an interpolation procedure, under which an unknown SAR range-compressed data parameter is estimated based on complex-valued SAR data samples and backprojected into a defined image plane. However, the phase of complex-valued SAR parameters estimated based on existing interpolators does not contain correct information about the range distance between the SAR imaging system and the given point of space in a defined image plane, which affects the quality of reconstructed SAR scenes. Thus, a phase-control procedure is required. This paper introduces extensions of existing linear, cubic, and sinc interpolation algorithms to interpolate complex-valued SAR data, where the phase of the interpolated SAR data value is controlled through the assigned a priori known range time that is needed for a signal to reach the given point of the defined image plane and return back. The efficiency of the extended algorithms is tested at the Nyquist rate on simulated and real data at THz frequencies and compared with existing algorithms. In comparison to the widely used nearest-neighbor interpolation algorithm, the proposed extended algorithms are beneficial from the lower computational complexity perspective, which is directly related to the offering of smaller memory requirements for SAR image reconstruction at THz frequencies.