Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
11,329 result(s) for "compost"
Sort by:
Composting
Young readers will learn the basics of decomposition and the impact recycling organic material can have on our world. Readers will also learn about soil makeup, nutrients, humus, and more.
Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane
Compost applications vary in their plant growth promotion and plant disease suppression, likely due to differences in physico-chemical and biological parameters. Our hypothesis was that bacteria are important for plant growth promotion and disease suppression of composts and, therefore, composts having these traits would contain similar sets of indicative bacterial taxa. Seventeen composts prepared from five different commercial providers and different starting materials were classified accordingly with bioassays using cress plants and the pathogen Pythium ultimum. Using a metabarcoding approach, bacterial communities were assessed in bulk composts and cress rhizoplanes. Six and nine composts showed significant disease suppression or growth promotion, respectively, but these traits did not correlate. Growth promotion correlated positively with nitrate content of composts, whereas disease suppression correlated negatively with factors representing compost age. Growth promotion and disease suppression explained significant portions of variation in bacterial community structures, i.e. 11.5% and 14.7%, respectively. Among the sequence variants (SVs) associated with growth promotion, Microvirga, Acinetobacter, Streptomyces, Bradyrhizobium and Bacillus were highly promising, while in suppressive composts, Ureibacillus, Thermogutta and Sphingopyxis were most promising. Associated SVs represent the basis for developing prediction tools for growth promotion and disease suppression, a highly desired goal for targeted compost production and application.
Bioactivity of two different humic materials and their combination on plants growth as a function of their molecular properties
Background and aimsNeutralization of adverse environmental effects of agriculture intensification to sustain population growth, requires ecologically sound alternatives for plant growth. We used as biostimulants towards germination of basil seeds and early growth of maize, two different humic materials: a potassium humate from leonardite (KH), and compost tea (CT) from a green compost made of coffee husks, and a 1:1 combination of the two (MIX). After their thorough chemical, molecular and conformational characterization, a relation between structure and bioactivity was investigated.ResultsCT showed the largest bioactivity on either seed germination or maize plantlets growth due to its great content of polar bioactive molecules including oxidized lignin fragment, saccharides and peptides. The more hydrophobic KH, rich of alkyl and aromatic moieties, also exerted a significant bioactivity on maize, though to a lesser extent. The application of MIX to hydroponically grown maize plantlets showed a smaller bioactivity of polar CT molecules due to their entrapment into new suprastructures stabilized by hydrogen bonds formed with complementary functions of KH hydrophobic components. However, while the KH hydrophobicity in MIX ensured adhesion to roots, its conformational flexibility was still sufficient to provide a greater bioactivity than control, by releasing bioactive CT components capable to enhance both biomass yield and root elongation.ConclusionsOur study suggests that a combination of humic materials with diverse and well-characterized molecular properties may become a new tool to produce innovative and ecologically viable plant growth promoters, whose bioactivity may be modulated.
Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism
Background and aimsBiostimulants of natural origin represent a growing ecological strategy to increase crops productivity, especially when applied in combination with microbial bioeffectors. We studied the effect of biostimulants such as Potassium Humates (KH) from Leonardite and Compost Tea (CT) from green compost on both productivity and nutritional status of lettuce plants, as well as on the primary and secondary metabolism of treated plants, when amended either alone or in combination with a commercial microbial inoculum (M+), mainly based on arbuscular mycorrhizal fungi (Micosat TabPlus).ResultsThe biomass production as well as the uptake of both macro- and micronutrients by lettuce plants significantly increased when amended by the mixture of both humic materials (MIX) combined with the microbial inoculum. Similarly, the synergic MIX_M+ treatment significantly affected both the primary and secondary metabolism of lettuce more than their individual applications, by increasing, respectively, the biosynthesis of essential amino acids and carbohydrates, and that of antioxidant polyphenolic compounds, such as hydroxycinnamic acids, flavonols and coumarins.ConclusionsOur findings suggest that a calibrated mixture of humic bioactive molecules in combination with microbial consortia represents a potential tool to improve crop productivity and its nutritional and metabolic status.
Effect of Compost Tea in Horticulture
Nowadays, modern agriculture looks for valid, sustainable, and green alternatives that are able to improve and maintain soil quality and fertility over time. Recycling organic waste as fertilizer is one of the strategies for sustainable production. Recently, the use of new products derived from compost, such as compost tea (CT), is increasing due to their positive effects on crops. This perspective wants to give an updated shot at the effect of compost tea in horticulture. In addition to the classification of compost tea, with a focus on production procedures and composition, the possible effects they have both on the control of phytopathogens in horticulture and the influence they can have on the content of bioactive molecules and nutrients were highlighted. It is interesting to note that compost teas can have an effect on the final content of micro and macronutrients, thus improving the nutritional qualities and also increasing the content of bioactive compounds that may play a role in maintaining and improving human health. The combined use of compost tea with other treatments is being explored as a promising and innovative direction.
Suitability of Biowaste and Green Waste Composts for Organic Farming in Germany and the Resulting Utilization Potentials
In this study, the suitability of biowaste and green waste composts in organic farming is presented based on quality assurance data of approximately 21,000 compost analyses from 2015 to 2020. The evaluation of compost suitability was based on both the legal regulations of the EU 2021/1165 and the requirements of the two largest German organic farming associations Bioland and Naturland. In 2020, 70.1% of the composts agreed with the above-mentioned regulations, 21.6% exceeded the limits for heavy metals and 7.3% exceeded the limits for foreign matter. The negative influence of the single elements regarding the suitability of composts for organic agriculture declined in the order Zn > Pb > Cd > Ni > Cu. In the bio-waste composts, the impurity content subsequently decreased by more than 50% from 2015 to 2020. In 2019 and 2020, approximately 2.5 million Mg fresh mass (FM) of the analyzed composts were suitable for organic farming. With an average compost application of 5 Mg FM per hectare (ha) and year, about 500,000 ha of arable land could have been supplied in 2020.