Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
658
result(s) for
"compressor performance"
Sort by:
Computational Analysis on the Performance of Centrifugal Compressor with Tapered Wall and Rotating Tapered Wall Vaneless Diffuser
by
Niveditha, P
,
B. V. S. S. S Prasad
in
Centrifugal compressors
,
Computer applications
,
Diffusion rate
2021
Computational analysis is performed on a centrifugal compressor fitted with tapered vaneless diffuser in order to increase the rate of diffusion. The main parameter involved in the present study is the wall taper angle of the diffuser, which is varied from 1° to 6° in the interval of 1°. Simulations are performed for the stationary as well as rotating diffuser at a speed of 79,000rpm, by using ANSYS CFX 17.2. By considering the geometry with stationary parallel wall diffuser as the base case, the performance enhancement in the characteristics such as static pressure recovery coefficient, stagnation pressure loss coefficient, isentropic efficiency, energy coefficient and torque coefficient are reported. The flow features in the compressor having various diffuser geometries are studied with the help of static pressure, radial velocity, static entropy, and contours of velocity streamlines at the design point. Of all the cases of stationary tapered diffusers, the diffuser with 3° taper angle showed optimum performance: the increase in isentropic efficiency (η) is by 1.5%, the increase in static pressure recovery coefficient (CP) is by about 9% and the decrease in stagnation pressure loss coefficient (CPOL) by 10.7%. On the other hand, it was found that in the case of rotating diffuser optimum performance: an increase of about 40% in CP and decrease of about 32% in CP0L occurred for a taper angle of 6°. However, its efficiency decreased by 2.9% with rotating diffuser in comparison with the base case, due to increased energy losses.
Journal Article
An Investigation on the Effect of Blade Tip Clearance on the Performance of a Single-Stage Axial Compressor
2019
In the present study, the numerical analysis of blade tip geometry effect on the performance of a single-stage axial compressor has been the focus of attention. The studied geometries included a rotor with variable tip clearance. For the first model, the tip clearance increases as it moves toward the blade trailing edge. The tip clearance of the second model reduces as it approaches the trailing edge, whereas in the third model, the tip clearance remains constant. The results indicated that the tip clearance of the first sample, as the worst tip clearance case, creates a 10% reduction in the stall margin with respect to the third standard model, and the second sample tip clearance brings about a stall margin reduction of 4% efficiency with respect to the third standard model. Then, the effect of blade tip clearance geometry on outlet flow angle of the rotor was inspected. The results showed that in the first model, the outlet flow angle has the largest deviation than the third standard model and the second model performance places somewhere between the two other tip clearance geometries. Also evident from the result is that taking advantage of the variable blade tip clearance is not an appropriate method for improving compressor performance.
Journal Article
Effect of Inlet Air Pre-Cooling of Water Injection on Compressor Performance at High Flight Mach
2019
In high altitude and Mach number, the inflow air with the high temperature will influence on the aero-engine performance while the mass injection pre-compressor cooling (MIPCC) technology is one of the problem-solving ways to reduce high temperature. To explore the convection coupling process between droplet and inflow air, the compressible Reynolds average N-S equations in the compressor coupled with the pre-cooling section is solved by the finite volume method to analyze its performance changes at different water injection rates and droplet sizes. Results show that, in the flight of 3.5 Mach number, the larger water injection rate easily form the shock wave due to the disturbance of droplets in the pre-cooling section. Furthermore, the temperature on the pressure surface near the trailing edge of the rotor blade aggravates along the radial migration, leading to uneven temperature distribution in the radial direction. Within the water injection rates of 0-8% and the particle sizes of 10-20 µm, the inflow mass flow of air improves by 15.3-31.4%; the temperature ratio of compressor drops by 3.6-16.14%, which results in the decrease of specific compression work of the compressor and the changing trend from “increasing” to “decreasing” for the compressor efficiency.
Journal Article
Evaluating the Effects of Blade Tip Clearance in Various Stages on the Performance of an Axial Compressor
2018
In the current study, the influence of blade tip clearance in different stages of a three-stage compressor is investigated. Performance diagrams of compressor were verified against experiment when there is no change in the tip clearance, after which the effect of tip clearance for the cases, 1, 1.5 and 2 mm, in the first, second and third stages of rotor was studied. The results indicated that the impact of tip clearance increase did not have any effect on choked flow rate value in the first and second stages, and only the change in the third stage tip clearance reduced the choked flow rate. For the same tip clearance value, the highest compressor performance loss occurs in the case of applying the tip clearance in the third stage, which is also the final stage and is highly sensitive to tip clearance changes. Moreover, modifying the tip clearance is effective on the flow angle in the trailing edge and as the tip clearance increases, the same thing happens about the flow angle. The maximum value of flow angle changes by modifying the tip clearance belongs to the third stage of the compressor.
Journal Article
A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities
by
Phung, Truong H.
,
Sultan, Ibrahim A.
,
Lu, Kui
in
compressor performance
,
Efficiency
,
Energy consumption
2023
Positive displacement compressors are essential in many engineering systems, from domestic to industrial applications. Many studies have been devoted to providing more insights into the workings and proposing solutions for performance improvements of these machines. This study aims to present a systematic review of published research on positive displacement compressors of various geometrical structures. This paper discusses the literature on compressor topics, including leakage, heat transfer, friction and lubrication, valve dynamics, port characteristics, and capacity control strategies. Moreover, the current status of the application of machine learning methods in positive displacement compressors is also discussed. The challenges and opportunities for future work are presented at the end of the paper.
Journal Article
Design and analysis of centrifugal compressor in carbon dioxide heat pump system
2024
Based on the advantages of energy saving, environmental protection and high efficiency, carbon dioxide heat pump system has great application prospects. However, there are still many technical problems to be solved, especially the design and optimization of carbon dioxide centrifugal compressor. In this paper, a centrifugal compressor in carbon dioxide heat pump system is designed. The compressor is directly driven by a high-speed permanent magnet synchronous motor. Two-stage impellers are installed on both sides of the motor, and the bearings are active magnetic bearings. The influences of inlet pressure and temperature on compressor performance are analyzed. In the range of inlet temperature from 35 to 55 °C, with the decrease of inlet temperature, the compressor pressure ratio increases by 12–29.8%, the power increases by 2.7–8.6%. In the range of inlet pressure from 4 to 6 MPa, with the increase of inlet pressure, the compressor pressure ratio increases by 12.3–38.6%, and the power increases by 8.7–17.8%. In addition, the calculation method of compressor axial force is introduced, the axial force is calculated, analyzed and optimized. Furthermore, the rotor dynamics of compressor rotor and the influences of bearing stiffness and diameter of motor rotor on rotor dynamics are studied. With the increase of bearing stiffness, the first-order critical speed and maximum displacement of the rotor increase. The research provides a theoretical reference for the design and optimization of centrifugal compressor in carbon dioxide heat pump system.
Journal Article
Experimentally Validated Modelling of an Oscillating Diaphragm Compressor for Chemisorption Energy Technology Applications
by
Meibodi, Saleh
,
Roskilly, Tony
,
Bao, Huashan
in
compressor performance
,
Compressors
,
Design and construction
2023
This study presents a detailed dynamic modelling and generic simulation method of an oscillating diaphragm compressor for chemisorption energy technology applications. The geometric models of the compressor were developed step by step, including the diaphragm movement, compressor dimensions, chamber areas and volumes and so on. The detailed mathematical model representing the geometry and kinematics of the diaphragm compressor was combined with the motion equation, heat transfer equation and energy balance equation to complete the compressor modelling. This combination enables the novel compressor model to simultaneously handle the simulation of momentum and energy balance of the diagram compressor. Furthermore, an experimental apparatus was set up to investigate and validate the present modelling and the simulation method. The performance of the compressor was experimentally evaluated in terms of the mass flow rate of the compressor at various compression ratios. Additionally, the effects of different parameters such as the inlet temperature and ambient temperature at various compressor ratios on the compressor performance were investigated. It was found reducing the inlet temperature from 40 to 5 °C at a constant pressure results in the enhancement of the compressor flow rate up to 14.7%. The compressor model proposed and developed in this study is shown to be not only able to accurately deal with the complexity of the dynamic behaviour of the compressor working flow but is also capable of effectively representing diaphragm compressors for analysis and optimisation purposes in various applications.
Journal Article
Integrated modelling and optimisation framework for multi-stage screw compressors utilising Gaussian process regression and Bayesian methods
by
Kumar, Abhishek
,
Kovacevic, Ahmed
,
Ponnusami, Sathiskumar Anusuya
in
Bayesian analysis
,
Compressors
,
Cooling
2025
High-pressure sectors like mining and construction require multi-stage screw compressors that can operate reliably at pressures over 16 bar. Single-stage compressors frequently encounter constraints such as elevated temperatures, rotor bending deformation, imperfect cooling effect of the injected oil, condensate, and diminished bearing longevity, rendering them inadequate for these specifications. This paper introduces a comprehensive modelling and optimisation approach for multi-stage screw compressors, integrating a physics-based chamber model with machine learning via Gaussian process regression. The framework employs Bayesian optimisation to methodically refine stage-specific parameters, enhancing performance and dependability while ensuring computing economy. The innovation is in its capacity to precisely forecast the performance of both individual and final stages, experimentally validated with a two-stage air screw compressor for water-well applications, attaining an error margin below 5%. A case study illustrated the framework’s efficacy by decreasing specific power usage by 2% via the optimisation of fluid injection parameters. This approach represents a significant advancement in compressor technology, providing a scalable and efficient solution for designing and optimising multi-stage screw compressors in high-pressure applications.
Journal Article
Analysis of compressor performance using data-driven machine learning techniques
by
Sanap, Yashraj
,
Hujare, Deepak
,
Chavan, Umesh
in
Accuracy
,
Artificial intelligence
,
Civil Engineering
2025
The verification of mathematical models for multistage reciprocating compressors is crucial for ensuring their accuracy and reliability. In this study, we used different machine learning (ML) models to verify the results of MATLAB-based models of single-stage reciprocating compressors, multistage reciprocating compressors without intercoolers, and multistage reciprocating compressors with intercoolers to simulate the real-world operating conditions of a reciprocating compressor. The verification focuses on key performance indicators, such as the pressure–volume (PV) graph, outlet temperature graph, volumetric efficiency, and pressure ratio graph. The MATLAB model computes thermodynamic parameters, such as the power required, outlet pressure, and outlet temperature for various operating conditions. The MATLAB model produced the following results for single-stage compressor: the outlet pressure increased by 1.6 times the inlet pressure of the compressor, the volume reduced by 20% of the volume at the inlet of the single-stage compressor, and the outlet temperature increased by 30% of the inlet temperature. In the case of a multistage compressor without an intercooler, the outlet pressure increased by about 3.3–3.6 times the inlet pressure of the compressor; the volume reduced by 60% of the volume at the inlet, and the outlet temperature increased by 35% in comparison to the inlet temperature of the multistage compressor without an intercooler. Subsequently, in the case of a multistage compressor with an intercooler at the first stage of compression, the pressure increased by three times the inlet pressure; at the second stage of compression, the pressure increased by six times the inlet pressure of the compressor, the volume was reduced by approximately 80%, and the intercooler maintained the increase in outlet temperature by 30%, limiting it and preventing excessive expansion of air in the compressor and increasing the efficiency of the compressor by 12% in comparison to the multistage compressor without an intercooler. In addition, the results generated by all the machine learning models used in the study were in correlation with the results generated by the MATLAB model for all three compressors, with an accuracy of approximately 90% or more for almost all the models implemented for prediction. By comparing the predicted outputs from the ML model with the MATLAB-generated results, the accuracy and consistency of the simulation were assessed. This study aims to bridge the gap between traditional mathematical modeling and modern data-driven validation techniques to ensure robustness in compressor performance predictions.
Journal Article
Effects of the Reynolds Number on the Efficiency and Stall Mechanisms in a Three-stage Axial Compressor
2024
The Reynolds number (Re) is an important parameter that can affect compressor performance. This study experimentally and numerically investigated the effect of Re variations on the efficiency and stall mechanisms for a three-stage axial flow compressor. In the experiment, the total pressure ratio, polytropic efficiency, and stalling mass flow rate were measured in a Re range varying from 1,100,000 to 55,000 to elucidate the Re effects. Unsteady three-dimensional numerical simulations were implemented to understand the stall mechanisms. The results indicate that the compressor efficiency and stall–pressure ratio begin to decrease remarkably as Re is reduced below a critical value, which is 220,000 in the case of the compressor studied. At a low Re, losses caused by the secondary flow near the hub and shroud increase remarkably, and the extended boundary layer separations at the blade suction surface further decrease the efficiency. The variation in Re changes the stall-initiated location. At higher Reynolds numbers, the interaction between the corner separation at the hub of stator 1 and the leakage flow through the blade tip gap induces a large vortex, which seriously blocks the blade passage. The blocking effect spreads to the aft stage and extends to higher spans, which results in the stall of the whole compressor. However, the blocking effect at the hub disappears at Re =55,000, and the interaction of the blade boundary layer separation near the shroud of rotor 1 and the tip leakage vortex causes a large blockage and then induces stall. The Re variation changes the radial flow transportation because of the varying effect on the aerodynamic performance of each blade element at different spans. This significantly influences the extent of the vortex near the end wall and ultimately changes the stall mechanisms.
Journal Article