Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,504 result(s) for "computational social simulation"
Sort by:
Everything you need to know about agent-based modelling and simulation
This paper addresses the background and current state of the field of agent-based modelling and simulation (ABMS). It revisits the issue of ABMS represents as a new development, considering the extremes of being an overhyped fad, doomed to disappear, or a revolutionary development, shifting fundamental paradigms of how research is conducted. This paper identifies key ABMS resources, publications, and communities. It also proposes several complementary definitions for ABMS, based on practice, intended to establish a common vocabulary for understanding ABMS, which seems to be lacking. It concludes by suggesting research challenges for ABMS to advance and realize its potential in the coming years.
Understanding the Future of Change Agency in Sustainability Through Cellular Automata Scenarios: The Role of Timing
One of the main interdisciplinary challenges today is to understand and change the dominant social perceptions and values that support and perpetuate unsustainable practices. Social computational simulations have been conceived in recent years to understand emergent results from complex systems. These dynamic social models are of interest to sustainability researchers because they provide a means to implement hypotheses and explore scenarios that could help extend our understanding of the future role of change agency in society. Change agents are individuals who directly or indirectly enable sustainable behaviors or inhibit practices that damage the environment and large social groups. Evidence-based strategies, guidelines and methods are necessary in order to manage creative change agency more effectively. This paper presents work with computational simulations, known as cellular automata, in order to explore the role of timing in triggering social change through uncoordinated, autonomous individual action. The paper identifies a number of issues related to creative change agency and proposes associated guidelines for practitioners. As a means of early validation, these findings are portrayed against empirical studies in the literature.
Projecting social contact matrices in 152 countries using contact surveys and demographic data
Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which contact data such as POLYMOD are not yet available.
Complex adaptive systems
This book provides the first clear, comprehensive, and accessible account of complex adaptive social systems, by two of the field's leading authorities. Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations,Complex Adaptive Systemsfocuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales. An E(3)-equivariant deep learning interatomic potential is introduced for accelerating molecular dynamics simulations. The method obtains state-of-the-art accuracy, can faithfully describe dynamics of complex systems with remarkable sample efficiency.
GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes
An important assessment prior to genome assembly and related analyses is genome profiling, where the k-mer frequencies within raw sequencing reads are analyzed to estimate major genome characteristics such as size, heterozygosity, and repetitiveness. Here we introduce GenomeScope 2.0 ( https://github.com/tbenavi1/genomescope2.0 ), which applies combinatorial theory to establish a detailed mathematical model of how k-mer frequencies are distributed in heterozygous and polyploid genomes. We describe and evaluate a practical implementation of the polyploid-aware mixture model that quickly and accurately infers genome properties across thousands of simulated and several real datasets spanning a broad range of complexity. We also present a method called Smudgeplot ( https://github.com/KamilSJaron/smudgeplot ) to visualize and estimate the ploidy and genome structure of a genome by analyzing heterozygous k-mer pairs. We successfully apply the approach to systems of known variable ploidy levels in the Meloidogyne genus and the extreme case of octoploid Fragaria   ×   ananassa . Prior to genome assembly, the raw sequencing reads must be analyzed for assessment of major genome characteristics such as genome size, heterozygosity, and repetitiveness. For this purpose, the authors introduce GenomeScope 2.0, an extension of GenomeScope for polyploid genomes, and Smudgeplot, which can estimate a genome’s ploidy.
Defining Computational Thinking for Mathematics and Science Classrooms
Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include \"computational thinking\" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics auricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.
Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors
The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups.
Dreaming during the Covid-19 pandemic: Computational assessment of dream reports reveals mental suffering related to fear of contagion
The current global threat brought on by the Covid-19 pandemic has led to widespread social isolation, posing new challenges in dealing with metal suffering related to social distancing, and in quickly learning new social habits intended to prevent contagion. Neuroscience and psychology agree that dreaming helps people to cope with negative emotions and to learn from experience, but can dreaming effectively reveal mental suffering and changes in social behavior? To address this question, we applied natural language processing tools to study 239 dream reports by 67 individuals, made either before the Covid-19 outbreak or during the months of March and April, 2020, when lockdown was imposed in Brazil following the WHO’s declaration of the pandemic. Pandemic dreams showed a higher proportion of anger and sadness words, and higher average semantic similarities to the terms “contamination” and “cleanness”. These features seem to be associated with mental suffering linked to social isolation, as they explained 40% of the variance in the PANSS negative subscale related to socialization (p = 0.0088). These results corroborate the hypothesis that pandemic dreams reflect mental suffering, fear of contagion, and important changes in daily habits that directly impact socialization.
Computer-based personality judgments are more accurate than those made by humans
Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r= 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r= 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.