Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
174,699 result(s) for "computed tomography"
Sort by:
Dual-Source Photon-Counting Computed Tomography—Part I: Clinical Overview of Cardiac CT and Coronary CT Angiography Applications
The photon-counting detector (PCD) is a new computed tomography detector technology (photon-counting computed tomography, PCCT) that provides substantial benefits for cardiac and coronary artery imaging. Compared with conventional CT, PCCT has multi-energy capability, increased spatial resolution and soft tissue contrast with near-null electronic noise, reduced radiation exposure, and optimization of the use of contrast agents. This new technology promises to overcome several limitations of traditional cardiac and coronary CT angiography (CCT/CCTA) including reduction in blooming artifacts in heavy calcified coronary plaques or beam-hardening artifacts in patients with coronary stents, and a more precise assessment of the degree of stenosis and plaque characteristic thanks to its better spatial resolution. Another potential application of PCCT is the use of a double-contrast agent to characterize myocardial tissue. In this current overview of the existing PCCT literature, we describe the strengths, limitations, recent applications, and promising developments of employing PCCT technology in CCT.
Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study
Conventional imaging using CT and bone scan has insufficient sensitivity when staging men with high-risk localised prostate cancer. We aimed to investigate whether novel imaging using prostate-specific membrane antigen (PSMA) PET-CT might improve accuracy and affect management. In this multicentre, two-arm, randomised study, we recruited men with biopsy-proven prostate cancer and high-risk features at ten hospitals in Australia. Patients were randomly assigned to conventional imaging with CT and bone scanning or gallium-68 PSMA-11 PET-CT. First-line imaging was done within 21 days following randomisation. Patients crossed over unless three or more distant metastases were identified. The primary outcome was accuracy of first-line imaging for identifying either pelvic nodal or distant-metastatic disease defined by the receiver-operating curve using a predefined reference-standard including histopathology, imaging, and biochemistry at 6-month follow-up. This trial is registered with the Australian New Zealand Clinical Trials Registry, ANZCTR12617000005358. From March 22, 2017 to Nov 02, 2018, 339 men were assessed for eligibility and 302 men were randomly assigned. 152 (50%) men were randomly assigned to conventional imaging and 150 (50%) to PSMA PET-CT. Of 295 (98%) men with follow-up, 87 (30%) had pelvic nodal or distant metastatic disease. PSMA PET-CT had a 27% (95% CI 23–31) greater accuracy than that of conventional imaging (92% [88–95] vs 65% [60–69]; p<0·0001). We found a lower sensitivity (38% [24–52] vs 85% [74–96]) and specificity (91% [85–97] vs 98% [95–100]) for conventional imaging compared with PSMA PET-CT. Subgroup analyses also showed the superiority of PSMA PET-CT (area under the curve of the receiver operating characteristic curve 91% vs 59% [32% absolute difference; 28–35] for patients with pelvic nodal metastases, and 95% vs 74% [22% absolute difference; 18–26] for patients with distant metastases). First-line conventional imaging conferred management change less frequently (23 [15%] men [10–22] vs 41 [28%] men [21–36]; p=0·008) and had more equivocal findings (23% [17–31] vs 7% [4–13]) than PSMA PET-CT did. Radiation exposure was 10·9 mSv (95% CI 9·8–12·0) higher for conventional imaging than for PSMA PET-CT (19·2 mSv vs 8·4 mSv; p<0·001). We found high reporter agreement for PSMA PET-CT (κ=0·87 for nodal and κ=0·88 for distant metastases). In patients who underwent second-line image, management change occurred in seven (5%) of 136 patients following conventional imaging, and in 39 (27%) of 146 following PSMA PET-CT. PSMA PET-CT is a suitable replacement for conventional imaging, providing superior accuracy, to the combined findings of CT and bone scanning. Movember and Prostate Cancer Foundation of Australia. [Display omitted]
Two decades of SPECT/CT – the coming of age of a technology: An updated review of literature evidence
PurposeSingle-photon emission computed tomography (SPECT) combined with computed tomography (CT) was introduced as a hybrid SPECT/CT imaging modality two decades ago. The main advantage of SPECT/CT is the increased specificity achieved through a more precise localization and characterization of functional findings. The improved diagnostic accuracy is also associated with greater diagnostic confidence and better inter-specialty communication.MethodsThis review presents a critical assessment of the relevant literature published so far on the role of SPECT/CT in a variety of clinical conditions. It also includes an update on the established evidence demonstrating both the advantages and limitations of this modality.ConclusionsFor the majority of applications, SPECT/CT should be a routine imaging technique, fully integrated into the clinical decision-making process, including oncology, endocrinology, orthopaedics, paediatrics, and cardiology. Large-scale prospective studies are lacking, however, on the use of SPECT/CT in certain clinical domains such as neurology and lung disorders. The review also presents data on the complementary role of SPECT/CT with other imaging modalities and a comparative analysis, where available.
18FFDG PET/CT performs better than CT in determining the bone biopsy site : randomized controlled clinical trial
Background Bone biopsy is the gold standard for diagnosing bone metastases. However, there is no clinical consensus regarding the optimal imaging test for determining the puncture site. Methods We compared the performance of [ 18 F]FDG PET/CT with CT in detecting bone metastases to achieve the highest biopsy efficiency. This registered prospective study enrolled 273 patients with bone lesions who were treated between January 2020 and March 2021. Patients were randomly assigned to undergo [ 18 F]FDG PET/CT or CT to determine the puncture site before bone biopsy. The accuracy, sensitivity, specificity, second biopsy rate, diagnostic time and cost-effectiveness of the two imaging tests were compared. Results The accuracy and sensitivity of [ 18 F]FDG PET/CT group in detecting bone metastases were significantly higher than CT group(97.08% vs. 90.44%, 98.76% vs. 92.22%, P  < 0.05). The second biopsy rate was significantly lower in the [ 18 F]FDG PET/CT group (2.19% vs. 5.15%; P  < 0.05). The diagnostic time of [ 18 F]FDG PET/CT was 18.33 ± 2.08 days, which was significantly shorter than 21.28 ± 1.25 days in CT group ( P  < 0.05). The cost of [ 18 F] FDG PETCT is 11428.35 yuan, and the cost of CT is 13287.52 yuan; the incremental cost is 1859.17 yuan. SUVmax > 6.3 combined with ALP > 103 U/L showed a tendency for tumor metastases with an AUC of 0.901 (95%CI 0.839 to 0.946, P  < 0.001). Conclusion [ 18 F]FDG PET/CT has better performance and cost-effectiveness than CT in determining the bone biopsy site for suspect bone metastases. Trial registration The prospective study was registered on 2018-04-10, and the registration number is ChiCTR1800015540.
Current practice in patients with differentiated thyroid cancer
Considerable changes have occurred in the management of differentiated thyroid cancer (DTC) during the past four decades, based on improved knowledge of the biology of DTC and on advances in therapy, including surgery, the use of radioactive iodine (radioiodine), thyroid hormone treatment and availability of recombinant human TSH. Improved diagnostic tools are available, including determining serum levels of thyroglobulin, neck ultrasonography, imaging (CT, MRI, SPECT–CT and PET–CT), and prognostic classifications have been improved. Patients with low-risk DTC, in whom the risk of thyroid cancer death is <1% and most recurrences can be cured, currently represent the majority of patients. By contrast, patients with high-risk DTC represent 5–10% of all patients. Most thyroid cancer-related deaths occur in this group of patients and recurrences are frequent. Patients with high-risk DTC require more aggressive treatment and follow-up than patients with low-risk DTC. Finally, the strategy for treating patients with intermediate-risk DTC is frequently defined on a case-by-case basis. Prospective trials are needed in well-selected patients with DTC to demonstrate the extent to which treatment and follow-up can be limited without increasing the risk of recurrence and thyroid cancer-related death.This Review summarizes clinical practice for differentiated thyroid cancer, highlighting advances in therapy, including surgery and the use of radioactive iodine, as well as improved diagnostic tools and prognostic classifications. Different management strategies for patients with low-risk, intermediate-risk and high-risk differentiated thyroid cancer are discussed.
Artificial intelligence-based CT-free quantitative thyroid SPECT for thyrotoxicosis: study protocol of a multicentre, prospective, non-inferiority study
IntroductionTechnetium thyroid uptake (TcTU) measured by single-photon emission CT/CT (SPECT/CT) is an important diagnostic tool for the differential diagnosis of Graves’ disease and destructive thyroiditis. Artificial intelligence (AI) may reduce CT-induced radiation exposure by substituting the role of CT in attenuation correction (AC) and thyroid segmentation, thus realising CT-free SPECT. This study aims to compare the diagnostic accuracy for the differential diagnosis of thyrotoxicosis between CT-free SPECT and SPECT/CT.Methods and analysisThe AI-based CT-free SPECT is a single-blind, multicentre, prospective, non-inferiority, clinical trial with a paired design conducted in the Republic of Korea. Eligible participants are adult (≥19 years old) thyrotoxicosis patients without a previous history of hyperthyroidism or hypothyroidism. Approximately 160 subjects will be screened for quantitative thyroid SPECT/CT using Tc-99m pertechnetate. CT-free thyroid SPECT will be realised using only SPECT data by the trained convolutional neural networks. TcTU will be calculated by SPECT/CT and CT-free SPECT in each subject. The primary endpoint is the accuracy of diagnosing Graves’ disease using TcTU. The trial will continue until 152 completed datasets have been enrolled to assess whether the 95% (two-sided) lower confidence limit of the accuracy difference (CT-free SPECT accuracy—SPECT/CT accuracy) for Graves’ disease is greater than −0.1. The secondary endpoints include the accuracy of diagnosing destructive thyroiditis and predicting the need for antithyroid drug prescription within 1 month of the SPECT/CT.Ethics and disseminationThe study protocol has been approved by the institutional review board of Seoul National University Bundang Hospital (IRB No. B-2304-824-301), Konkuk University Medical Center (IRB No. 2023-05-022-006) and Chonnam National University Hospital (IRB No. CNUH-2023-108). Findings will be disseminated as reports, presentations and peer-reviewed journal articles.Trial registration numberKCT0008387, Clinical Research Information Service of the Republic of Korea (CRIS).
Implant Restorations
The fourth edition of Implant Restorations: A Step-by-Step Guide provides a wealth of updated and expanded coverage on detailed procedures for restoring dental implants. Focusing on the most common treatment scenarios, it offers concise literature reviews for each chapter and easy-to-follow descriptions of the techniques, along with high-quality clinical photographs demonstrating each step. Comprehensive throughout, this practical guide begins with introductory information on incorporating implant restorative dentistry in clinical practice. It covers diagnosis and treatment planning and digital dentistry, and addresses advances in cone beam computerized tomography (CBCT), treatment planning software, computer generated surgical guides, rapid prototype printing and impression-less implant restorative treatments, intra-oral scanning, laser sintering, and printing/milling polymer materials. Record-keeping, patient compliance, hygiene regimes, and follow-up are also covered. * Provides an accessible step-by-step guide to commonly encountered treatment scenarios, describing procedures and techniques in an easy-to-follow, highly illustrated format * Offers new chapters on diagnosis and treatment planning and digital dentistry * Covers advances in cone beam computerized tomography (CBCT), computer generated surgical guides, intra-oral scanning, laser sintering, and more An excellent and accessible guide on a burgeoning subject in modern dental practice by one of its most experienced clinicians, Implant Restorations: A Step-by-Step Guide, Fourth Edition will appeal to prosthodontists, general dentists, implant surgeons, dental students, dental assistants, hygienists, and dental laboratory technicians.
The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer
The applications of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/X-ray computed tomography (PET/CT) in the management of patients with breast cancer have been extensively studied. According to these studies, PET/CT is not routinely performed for the diagnosis of primary breast cancer, although PET/CT in specific subtypes of breast cancer correlates with histopathologic features of the primary tumor. PET/CT can detect metastases to mediastinal, axial, and internal mammary nodes, but it cannot replace the sentinel node biopsy. In detection of distant metastases, this imaging tool may have a better accuracy in detecting lytic bone metastases compared to bone scintigraphy. Thus, PET/CT is recommended when advanced-stage disease is suspected, and conventional modalities are inconclusive. Also, PET/CT has a high sensitivity and specificity to detect loco-regional recurrence and is recommended in asymptomatic patients with rising tumor markers. Numerous studies support the future role of PET/CT in prediction of response to neoadjuvant chemotherapy (NAC). PET/CT has a higher diagnostic value for prognostic risk stratification in comparison with conventional modalities. With the continuing research on the treatment planning and evaluation of patients with breast cancer, the role of PET/CT can be further extended.
18FMFBG PET/CT outperforming 123IMIBG SPECT/CT in the evaluation of neuroblastoma
PurposeIodine 123 labeled meta-iodobenzylguanidine ([123I]MIBG) scan with SPECT/CT imaging is one of the most commonly used imaging modalities in the evaluation of neuroblastoma. [18F]-meta-fluorobenzylguanidine ([18F]MFBG) is a novel positron emission tomography (PET) tracer which was reported to have a similar biodistribution to [123I]MIBG. However, the experience of using [18F]MFBG PET/CT in the evaluation of patients with neuroblastoma is limited. This preliminary investigation aims to assess the efficacy of [18F]MFBG PET/CT in the evaluation of neuroblastomas in comparison to [123I]MIBG scans with SPECT/CT.Materials and methodsIn this prospective, single-center study, 40 participants (mean age 6.0 ± 3.7 years) with history of neuroblastoma were enrolled. All children underwent both [123I]MIBG SPECT/CT and [18F]MFBG PET/CT studies. The number of lesions and the Curie scores revealed by each imaging method were recorded.ResultsSix patients had negative findings on both [123I]MIBG and [18F]MFBG studies. Four of the 34 patients (11.8%) were negative on [123I]MIBG but positive on [18F]MFBG, while 30 patients were positive on both [123I]MIBG and [18F]MFBG studies. In these 34 patients, [18F]MFBG PET/CT identified 784 lesions while [123I]MIBG SPECT/CT detected 532 lesions (p < 0.001). The Curie scores obtained from [18F]MFBG PET/CT (11.32 ± 8.18, range 1-27) were statistically higher (p < 0.001) than those from [123I]MIBG SPECT/CT (7.74 ± 7.52, range 0-26). 30 of 34 patients (88.2%) with active disease on imaging had higher Curie scores based on the [18F]MFBG study than on the [123I]MIBG imaging.Conclusion[18F]MFBG PET/CT shows higher lesion detection rate than [123I]MIBG SPECT/CT in the evaluation of pediatric patients with neuroblastoma.Clinical trial registrationClinicaltrials.gov: NCT05069220 (Registered: 25 September 2021, retrospectively registered); Institute Review Board of Peking Union Medical College Hospital: ZS-2514