Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
749
result(s) for
"contaminated sites"
Sort by:
Environmental Justice in Industrially Contaminated Sites. A Review of Scientific Evidence in the WHO European Region
by
Pasetto, Roberto
,
Mattioli, Benedetta
,
Marsili, Daniela
in
Access to information
,
Brownfields
,
Chemical contaminants
2019
In the WHO European Region the topic of contaminated sites is considered a priority among environment and health themes. Communities living in or close to contaminated sites tend to be characterized by a high prevalence of ethnic minorities and by an unfavorable socioeconomic status so rising issues of environmental justice. A structured review was undertaken to describe the contents of original scientific studies analyzing distributive and procedural justice in industrially contaminated sites carried out in the WHO European Region in the period 2010–2017. A systematic search of the literature was performed. In total, 14 articles were identified. Wherever assessments on environmental inequalities were carried out, an overburden of socioeconomic deprivation or vulnerability, with very few exemptions, was observed. The combined effects of environmental and socioeconomic pressures on health were rarely addressed. Results show that the studies on environmental and health inequalities and mechanisms of their generation in areas affected by industrially contaminated sites in the WHO European Region are in their early stages, with exemption of UK. Future efforts should be directed to improve study strategies with national and local assessments in order to provide evidence for equity-oriented interventions to reduce environmental exposure and related health risks caused by industrial contamination.
Journal Article
Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges
by
Symons, Robert
,
Lloyd-Smith, Mariann
,
Costner, Pat
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Benzofurans - analysis
2008
Background, aim and scope
Once they have been generated, polychlorinated dibenzo-
p
-dioxins (PCDDs) and dibenzofurans (PCDFs) and other persistent organic pollutants (POPs) can persist in soils and sediments and in waste repositories for periods extending from decades to centuries. In 1994, the US EPA concluded that contaminated sites and other reservoirs are likely to become the major source of contemporary pollution problems with these substances. With this in mind, this article is the first in a new series in
ESPR
under the title ‘Case Studies on Dioxin and POP Contaminated Sites—Contemporary and Future Relevance and Challenges’, which will address this important issue. The series will document various experiences from sites contaminated with PCDD/F and other POPs. This article provides an overview of the content of the articles comprising the series. In addition, it provides a review of the subject in its own right and identifies the key issues arising from dioxin/POP-contaminated sites. Additionally, it highlights the important conclusions that can be drawn from these examples. The key aim of this article and of the series as a whole is to provide a comprehensive overview of the types of PCDD/F contaminated sites that exist as a result of historical activities. It details the various processes whereby these sites became contaminated and attempts to evaluate their contemporary relevance as sources of PCDD/Fs and other POPs. It also details the various strategies used to assess these historical legacies of contamination and the concepts developed, or which are under development, to effect their remediation.
Main features
Special sessions on ‘Contaminated sites—Cases, remediation, risk and policy’ were held at the DIOXIN conferences in 2006 and 2007, and this theme will be continued at DIOXIN 2008 to be held in Birmingham. Selected cases from the approximately 70 contributions made to these sessions, together with some additional invited case studies are outlined together with the key issues they raise. By evaluating these cases and adding details of experiences published in the current literature, an overview will be given of the different features and challenges of dioxin and POP-contaminated sites.
Results
This article provides a systematic categorisation of types of PCDD/F and POP-contaminated sites. These are categorised according to the chemical or manufacturing process, which generated the PCDD/Fs or POPs and also includes the use and disposal aspects of the product life cycle in question. The highest historical PCDD/F and dioxin-like polychlorinated biphenyl (PCB) contamination burdens have arisen as a result of the production of chlorine and of chlorinated organic chemicals. In particular, the production of chlorinated pesticides, PCBs and the related contaminated waste streams are identified being responsible for historical releases of toxic equivalents (TEQs) at a scale of many tonnes. Along with such releases, major PCDD/F contaminated sites have been created through the application or improper disposal of contaminated pesticides, PCBs and other organochlorine chemicals, as well through the recycling of wastes and their attempted destruction. In some extreme examples, PCDD/F contaminated sites have also resulted from thermal processes such as waste incinerators, secondary metal industries or from the recycling or deposition of specific waste (e.g. electronic waste or car shredder wastes), which often contain chlorinated or brominated organic chemicals. The examples of PCDD/F and dioxin-like PCB contamination of fish in European rivers or the impact of contaminated sites upon fishing grounds and upon other food resources demonstrate the relevance of these historical problems to current and future human generations. Many of the recent food contamination problems that have emerged in Europe and elsewhere demonstrate how PCDD/F and dioxin like PCBs from historical sources can directly contaminate human and animal feedstuffs and indeed highlight their considerable contemporary relevance in this respect. Accordingly, some key experiences and lessons learnt regarding the production, use, disposal and remediation of POPs from the contaminated sites are summarised.
Discussion
An important criterion for evaluating the significance and risks of PCDD/Fs and other POPs at contaminated sites is their present or future potential for mobility. This, in turn, determines to a large degree their propensity for off-site transport and environmental accessibility. The detailed evaluation of contaminated site cases reveals different site-specific factors, which influence the varied pathways through which poor water-soluble POPs can be mobilised. Co-contaminants with greater water solubility are also typically present at such sites. Hence, pumping of groundwater (pump and treat) is often required in addition to attempting to physically secure a site. At an increasing number of contaminated sites, securing measures are failing after relatively short time spans compared to the time horizon, which applies to persistent organic pollutant contamination. Due to the immense costs and challenges associated with remediation of contaminated sites ‘monitored natural attenuation’ is increasingly gaining purchase as a conceptual remediation approach. However, these concepts may well prove limited in their practical application to contaminated sites containing persistent organic pollutants and other key pollutants like heavy metals.
Conclusions
It is inevitable, therefore, that dioxin/POP-contaminated sites will remain of contemporary and future relevance. They will continue to represent an environmental issue for future generations to address. The securing and/or remediation of dioxin/POP-contaminated sites is very costly, generally in the order of tens or hundreds of millions of dollars. Secured landfills and secured production sites need to be considered as constructions not made for ‘eternity’ but built for a finite time scale. Accordingly, they will need to be controlled, supervised and potentially repaired/renewed. Furthermore, the leachates and groundwater impacted by these sites will require ongoing monitoring and potential further remediation. These activities result in high maintenance costs, which are accrued for decades or centuries and should, therefore, be compared to the fully sustainable option of complete remediation. The contaminated site case studies highlight that, while extensive policies and established funds for remediation exist in most of the industrialised western countries, even these relatively well-regulated and wealthy countries face significant challenges in the implementation of a remediation strategy. This highlights the fact that ultimately only the prevention of contaminated sites represents a sustainable solution for the future and that the Polluter Pays Principle needs to be applied in a comprehensive way to current problems and those which may emerge in the future.
Recommendations and perspectives
With the continuing shift of industrial activities in developing and transition economies, which often have poor regulation (and weak self-regulation of industries), additional global challenges regarding POPs and other contaminated sites may be expected. In this respect, a comprehensive application of the “polluter pays principle” in these countries will also be a key to facilitate the clean-up of contaminated areas and the prevention of future contaminated sites. The threats and challenges of contaminated sites and the high costs of securing/remediating the problems highlight the need for a comprehensive approach based upon integrated pollution prevention and control. If applied to all polluting (and potentially polluting) industrial sectors around the globe, such an approach will prove to be both the cheapest and most sustainable way to underpin the development of industries in developing and transition economies.
Journal Article
Soil pollution and site remediation policies in China: A review
2015
It was not until the 1980s that China's policy makers became aware of the detrimental impacts on urban health from soil pollution as a result of industrial waste emissions. For the past three decades, the Chinese government has strived to prevent and control industrial pollution. Setting appropriate environmental policies is the key to mitigating the legacy of industrial waste emissions accumulated for three decades. In this paper, we review the development process by outlining the evolution of the policies and the resulting legal infrastructure in terms of acts, regulations, ordinances, and standards. Deficiencies of the existing policies are identified. In the early stages, environmental policies were fragmented, consisting of single-purpose laws that are narrowly focused. With time, these policies gradually evolved to become better integrated and comprehensive management plans. However, the laws emphasize contaminated site restoration instead of preventing soil pollution. The legal framework shows that the policies that are in place often lack clear mandates because the authorizations are piggybacked on environmental acts and regulations that do not directly address issues of soil pollution. Furthermore, implementation plans are impractical due to outdated soil quality standards, unclear soil cleanup goals, unenforceable liability and supervision mechanisms, limited funding, lack of transparency and public outreach, and the unreliable financial and technical capabilities of the remediation industries.
Journal Article
Risk Assessment of Exposure to Natural Radiation in Soil Using RESRAD-ONSITE and RESRAD-BIOTA in the Cobalt-Nickel Bearing Areas of Lomié in Eastern Cameroon
2022
Nkamouna-Kongo is a cobalt–nickel deposit located in Lomié, Eastern Cameroon. Mining creates radiation exposure pathways that must be considered in risk management scenarios. RESRAD-ONSITE and RESRAD-BIOTA, developed by the US DOE, assess contaminated sites by deriving cleanup criteria and estimating the radiation dose and risk associated with residual radioactive materials using site-specific parameters. This paper evaluated the radiation dose in biota and the health risk from exposure to naturally occurring radionuclides. The activity of 226Ra, 232Th, and 40K was determined by γ-spectrometry. The internal doses were 2.13 × 10−07, 1.42 × 10−06, and 8.38 × 10−05 Gy d−1 for animals and 2.38 × 10−07, 2.04 × 10−06, and 9.07 × 10−05 Gy d−1 for plants. The maximum total dose of 0.7234 mSv yr−1 was obtained at t = 1 year. The external dose contribution obtained at t = 1 year for all nuclides summed and all component pathways was 0.4 mSv yr−1, above the background radiation dose limit of 2.5 × 10−01 mSv yr−1. A maximum cancer risk of 1.36 × 10−03 was observed at t = 1 year. It was also shown in the RESRAD calculations that the total cancer morbidity risks from plant ingestion, radon (independent of water), and external gamma exposure pathways were greater than those from other exposure pathways. The high risk calculated for 226Ra relative to 232Th and 40K makes it the primary human health concern in the study area. The use of a 1 m cover thickness would remediate the contaminated site to a dose on the order of 10−5 mSv yr−1 for a period of 0 to 100 years. The values of these doses are below the US DOE recommended limits.
Journal Article
Mesothelioma incidence and asbestos exposure in Italian national priority contaminated sites
by
Marinaccio, Alessandro
,
Pasetto, Roberto
,
Bruno, Caterina
in
Asbestos
,
Asbestos - toxicity
,
asbestos exposure
2017
Objectives This study aimed to (i) describe mesothelioma incidence in the Italian national priority contaminated sites (NPCS) on the basis of data available from the Italian National Mesothelioma Registry (ReNaM) and (ii) profile NPCS using Bayesian rank analysis. Methods Incident cases of mesothelioma and standardized incidence ratios (SIR) were estimated for both genders in each of the 39 selected NPCS in the period 2000–2011. Age-standardized rates of Italian geographical macro areas were used to estimate expected cases. Rankings of areas were produced by a hierarchical Bayesian model. Asbestos exposure modalities were discussed for each site. Results In the study period, 2683 incident cases of mesothelioma (1998 men, 685 women) were recorded. An excess of mesothelioma incidence was confirmed in sites with a known past history of direct use of asbestos (among men) such as Balangero (SIR 197.1, 95% CI 82.0–473.6), Casale Monferrato (SIR 910.7, 95% CI 816.5–1012.8), and Broni (SIR 1288.5, 95% CI 981.9–1691.0), in sites with shipyards and harbors (eg, Trieste, La Spezia, Venice, and Leghorn), and in settings without documented direct use of asbestos. The analysis ranked the sites of Broni and Casale Monferrato (both genders) and Biancavilla (only for women) the highest. Conclusions The present study confirms that asbestos pollution is a risk for people living in polluted areas, due to not only occupational exposure in industrial settings with direct use of asbestos but also the presence of asbestos in the environment. Epidemiological surveillance of asbestos-related diseases is a fundamental tool for monitoring the health profile in NPCS.
Journal Article
Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees
by
Rein, Arno
,
Trapp, Stefan
,
Algreen, Mette
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Bioaccumulation
2014
The main purpose of this study was to determine typical concentrations of heavy metals (HM) in wood from willows and poplars, in order to test the feasibility of phytoscreening and phytoextraction of HM. Samples were taken from one strongly, one moderately, and one slightly polluted site and from three reference sites. Wood from both tree species had similar background concentrations at 0.5 mg kg⁻¹ for cadmium (Cd), 1.6 mg kg⁻¹ for copper (Cu), 0.3 mg kg⁻¹ for nickel (Ni), and 25 mg kg⁻¹ for zinc (Zn). Concentrations of chromium (Cr) and lead (Pb) were below or close to detection limit. Concentrations in wood from the highly polluted site were significantly elevated, compared to references, in particular for willow. The conclusion from these results is that tree coring could be used successfully to identify strongly heavy metal-polluted soil for Cd, Cu, Ni, Zn, and that willow trees were superior to poplars, except when screening for Ni. Phytoextraction of HMs was quantified from measured concentration in wood at the most polluted site. Extraction efficiencies were best for willows and Cd, but below 0.5 % over 10 years, and below 1 ‰ in 10 years for all other HMs.
Journal Article
Risk valuation of ecological resources at contaminated deactivation and decommissioning facilities: methodology and a case study at the Department of Energy’s Hanford site
by
Burger, Joanna
,
Gochfeld, Michael
,
Jeitner, Christian
in
Agreements
,
Animals
,
Atmospheric Protection/Air Quality Control/Air Pollution
2018
Many countries are faced with monumental cleanup tasks remaining from World War II and the Cold War and consistent methodologies are essential to assess the risk from pollutants and the risk from cleanup. In the USA, the Department of Energy (DOE), and other federal and state agencies need to be able to rapidly evaluate the risk to ecological resources for remediation projects. While ecological risk assessments for radionuclides and other contaminants can be performed for different species, evaluations of species assemblages, communities, and ecosystems is more difficult. We summarize an evaluation method for ecological resources on individual remediation units that will allow comparison among a large number of units and that can be modified and applied to the DOE complex-wide. We evaluated the deactivation and decommissioning (D & D) facilities at the Hanford site as case studies. Remediation of these sites has the potential to provide harm to, or increase the value of, ecological resources during and after the process. The evaluation method includes three categories: (1) general steps, (2) ecological descriptions, and (3) ecological ratings. The general steps include identifying the categories of resources (level of resource value), identifying the units to be evaluated (e.g., remediation units), identifying a reasonable ecological buffer around the evaluation units, identifying the remediation options (from milestones or other agreements), and developing a rating scale. Ecological descriptions include identifying previous ecological values of specific areas on the evaluation unit, conducting field studies to assess the current conditions, and summarizing the percent of each resource value on the evaluation unit and buffer area. The ecological risk of harm is determined by using the rating scale to evaluate the potential harm to the ecological (and eco-cultural) resources on each evaluation unit currently, during remediation, and in the post-remediation phase. Currently, the risks (potential harm) to ecological resources on the D & D facilities at the Hanford site are non-discernible, but they increase to very high (for reactors) during remediation when there is physical disruption, increased traffic and personnel, and possible increased contamination. Following remediation, the potential harm to ecological resources is low, and the value may be increased due to restoration of native vegetation on sites that were largely industrial prior to remediation. These methods provide managers, regulators, tribes, and the general public with assurance that ecological and eco-cultural resources and the environment are being protected during and following remediation.
Journal Article
PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites
2023
BackgroundPer- and polyfluorinated alkyl substances (PFAS) have received increasing scientific and political attention in recent years. Several thousand commercially produced compounds are used in numerous products and technical processes. Due to their extreme persistence in the environment, humans and all other life forms are, therefore, increasingly exposed to these substances. In the following review, PFAS will be examined comprehensively.ResultsThe best studied PFAS are carboxylic and sulfonic acids with chain lengths of C4 to C14, particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). These substances are harmful to aquatic fauna, insects, and amphibians at concentrations of a few µg/L or less, accumulate in organisms, and biomagnify in food webs. Humans, as the final link in numerous food chains, are subjected to PFAS uptake primarily through food and drinking water. Several PFAS have multiple toxic effects, particularly affecting liver, kidney, thyroid, and the immune system. The latter effect is the basis for the establishment of a tolerable weekly dose of only 4.4 ng/kg body weight for the sum of the four representatives PFOA, PFOS, perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) by the European Food Safety Authority (EFSA) in 2020. Exposure estimates and human biomonitoring show that this value is frequently reached, and in many cases exceeded. PFAS are a major challenge for analysis, especially of products and waste: single-substance analyses capture only a fragment of the large, diverse family of PFAS. As a consequence, sum parameters have gained increasing importance. The high mobility of per and polyfluorinated carboxylic and sulfonic acids makes soil and groundwater pollution at contaminated sites a problem. In general, short-chain PFAS are more mobile than long-chain ones. Processes for soil and groundwater purification and drinking water treatment are often ineffective and expensive. Recycling of PFAS-containing products such as paper and food packaging leads to carryover of the contaminants. Incineration requires high temperatures to completely destroy PFAS. After PFOA, PFOS and a few other perfluorinated carboxylic and sulfonic acids were regulated internationally, many manufacturers and users switched to other PFAS: short-chain representatives, per- and polyfluorinated oxo carboxylic acids, telomeric alcohols and acids. Analytical studies show an increase in environmental concentrations of these chemicals. Ultra-short PFAS (chain length C1–C3) have not been well studied. Among others, trifluoroacetic acid (TFA) is present globally in rapidly increasing concentrations.ConclusionsThe substitution of individual PFAS recognized as hazardous by other possibly equally hazardous PFAS with virtually unknown chronic toxicity can, therefore, not be a solution. The only answer is a switch to fluorine-free alternatives for all applications in which PFAS are not essential.
Journal Article
Bioremediation of petroleum hydrocarbon contaminated soil: a review on principles, degradation mechanisms, and advancements
by
Aragaw, Tadele Assefa
,
Genet, Melkamu Birlie
,
Mekonnen, Bassazin Ayalew
in
Bioremediation
,
Carbon
,
Contaminants
2024
Petroleum hydrocarbons (PHCs) are key energy sources for several industries and daily life. Soil contamination from oily PHC spills is commonly detected in cities and industrial facilities where crude oil is used. The release of PHC pollutants into the environment, whether accidentally from petroleum industries or human activities, has become a leading source of soil pollution. Consequently, the mineralization of PHC-polluted sites has become a central issue worldwide. Although bioremediation is imperative for environmental safety and management, several approaches have been developed for PHC bioremediation. However, much remains to be explored in this regard. This review explores bioremediation of PHC-contaminated soil and provides a comprehensive examination of the principles, degradation mechanisms, and recent advancements in the field. Several microbial species have been used to study the bioremediation of PHCs, emphasizing the pivotal roles of diverse microbial communities. Aspergillus spp., Proteobacteria , and Firmicutes groups of microorganisms were the most efficient in remediating PHC-contaminated soil. The fundamental concepts behind the bioremediation of PHC and the complex mechanisms that govern degradation were elucidated. Limiting factors in the bioremediation process and recent innovations propelling the field were also discussed. Therefore, understanding the degradation pathway, ensuring complete degradation of contaminants, and flexible legislation for the proper use of genetically engineered microbes can make bioremediation more sustainable and cost-effective.
Journal Article
Site Pollution Remediation and Its Technology
by
FAN, Wangtao
,
WEI, Jing
,
CHENG, Jie
in
Agribusiness
,
Contaminated sites, Brownfield, Soil pollution, Contaminated site remediation technology
2022
This paper summarized the connotation of contaminated site remediation, the differences between contaminated site and brownfield, the differences between contaminated site and soil pollution and land pollution, clarified the relationship between the concepts, and introduced the remediation technology of contaminated site.
Journal Article