Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
65,013
result(s) for
"contrast"
Sort by:
Contrast data mining : concepts, algorithms, and applications
\"Preface Contrasting is one of the most basic types of analysis. Contrasting based analysis is routinely employed, often subconsciously, by all types of people. People use contrasting to better understand the world around them and the challenging problems they want to solve. People use contrasting to accurately assess the desirability of important situations, and to help them better avoid potentially harmful situations and embrace potentially beneficial ones. Contrasting involves the comparison of one dataset against another. The datasets may represent data of different time periods, spatial locations, or classes, or they may represent data satisfying different conditions. Contrasting is often employed to compare cases with a desirable outcome against cases with an undesirable one, for example comparing the benign and diseased tissue classes of a cancer, or comparing students who graduate with university degrees against those who do not. Contrasting can identify patterns that capture changes and trends over time or space, or identify discriminative patterns that capture differences among contrasting classes or conditions. Traditional methods for contrasting multiple datasets were often very simple so that they could be performed by hand. For example, one could compare the respective feature means, compare the respective attribute-value distributions, or compare the respective probabilities of simple patterns, in the datasets being contrasted. However, the simplicity of such approaches has limitations, as it is difficult to use them to identify specific patterns that offer novel and actionable insights, and identify desirable sets of discriminative patterns for building accurate and explainable classifiers\"-- Provided by publisher.
Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines
by
Webb, Judith A. W.
,
Morcos, Sameh K.
,
Heinz-Peer, Gertraud
in
Brand names
,
Committees
,
Contrast agents
2011
Purpose
The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN).
Areas covered
Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic measures used to reduce the incidence of CIN, and the management of patients receiving metformin.
Key Points
• Definition, risk factors and prevention of contrast medium induced nephropathy are reviewed.
• CIN risk is lower with intravenous than intra-arterial iodinated contrast medium.
• eGFR of 45 ml/min/1.73 m
2
is CIN risk threshold for intravenous contrast medium.
• Hydration with either saline or sodium bicarbonate reduces CIN incidence.
• Patients with eGFR ≥60 ml/min/1.73 m
2
receiving contrast medium can continue metformin normally.
Journal Article
Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration
by
Siebenhandl-Wolff, Petra
,
Evans, Paul
,
Tranquart, Francois
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2022
Gadolinium-based contrast agents (GBCAs) have transformed magnetic resonance imaging (MRI) by facilitating the use of contrast-enhanced MRI to allow vital clinical diagnosis in a plethora of disease that would otherwise remain undetected. Although over 500 million doses have been administered worldwide, scientific research has documented the retention of gadolinium in tissues, long after exposure, and the discovery of a GBCA-associated disease termed nephrogenic systemic fibrosis, found in patients with impaired renal function. An understanding of the pharmacokinetics in humans and animals alike are pivotal to the understanding of the distribution and excretion of gadolinium and GBCAs, and ultimately their potential retention. This has been well studied in humans and more so in animals, and recently there has been a particular focus on potential toxicities associated with multiple GBCA administration. The purpose of this review is to highlight what is currently known in the literature regarding the pharmacokinetics of gadolinium in humans and animals, and any toxicity associated with GBCA use.
Journal Article
Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time
by
Ramakrishnan Shyam
,
Spearman, Anthony L
,
McLaughlin, Ryan R
in
Animals
,
Chemical compounds
,
Contrast agents
2020
High-resolution, multiplexed experiments are a staple in cellular imaging. Analogous experiments in animals are challenging, however, due to substantial scattering and autofluorescence in tissue at visible (350–700 nm) and near-infrared (700–1,000 nm) wavelengths. Here, we enable real-time, non-invasive multicolour imaging experiments in animals through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and complementary advances in imaging technologies. We developed tunable, SWIR-emissive flavylium polymethine dyes and established relationships between structure and photophysical properties for this class of bright SWIR contrast agents. In parallel, we designed an imaging system with variable near-infrared/SWIR excitation and single-channel detection, facilitating video-rate multicolour SWIR imaging for optically guided surgery and imaging of awake and moving mice with multiplexed detection. Optimized dyes matched to 980 nm and 1,064 nm lasers, combined with the clinically approved indocyanine green, enabled real-time, three-colour imaging with high temporal and spatial resolutions.Conducting high-resolution, multiplexed imaging in living mammals is challenging because of considerable scattering and autofluorescence in tissue at visible and near-infrared wavelengths. Now, real-time, non-invasive multicolour imaging experiments in live animals have been achieved through the design of optical contrast agents for the shortwave infrared (SWIR, 1,000–2,000 nm) region and the introduction of excitation multiplexing with single-channel SWIR detection.
Journal Article
MRI contrast agents: Classification and application (Review)
2016
Magnetic resonance imaging (MRI) contrast agents are categorised according to the following specific features: chemical composition including the presence or absence of metal atoms, route of administration, magnetic properties, effect on the magnetic resonance image, biodistribution and imaging applications. The majority of these agents are either paramagnetic ion complexes or superparamagnetic magnetite particles and contain lanthanide elements such as gadolinium (Gd3+) or transition metal manganese (Mn2+). These elements shorten the T1 or T2 relaxation time, thereby causing increased signal intensity on T1-weighted images or reduced signal intensity on T2-weighted images. Most paramagnetic contrast agents are positive agents. These agents shorten the T1, so the enhanced parts appear bright on T1-weighted images. Dysprosium, superparamagnetic agents and ferromagnetic agents are negative contrast agents. The enhanced parts appear darker on T2-weighted images. MRI contrast agents incorporating chelating agents reduces storage in the human body, enhances excretion and reduces toxicity. MRI contrast agents may be administered orally or intravenously. According to biodistribution and applications, MRI contrast agents may be categorised into three types: extracellular fluid, blood pool and target/organ-specific agents. A number of contrast agents have been developed to selectively distinguish liver pathologies. Some agents are also capable of targeting other organs, inflammation as well as specific tumors.
Journal Article
Contrast-enhanced ultrasound: a comprehensive review of safety in children
by
Beth, McCarville M
,
Papadopoulou Frederica
,
Ntoulia Aikaterini
in
Adults
,
Adverse events
,
Anaphylaxis
2021
Contrast-enhanced ultrasound (CEUS) has been increasingly used in pediatric radiology practice worldwide. For nearly two decades, CEUS applications have been performed with the off-label use of gas-containing second-generation ultrasound contrast agents (UCAs). Since 2016, the United States Food and Drug Administration (FDA) has approved the UCA Lumason for three pediatric indications: the evaluation of focal liver lesions and echocardiography via intravenous administration and the assessment of vesicoureteral reflux via intravesical application (contrast-enhanced voiding urosonography, ceVUS). Prior to the FDA approval of Lumason, numerous studies with the use of second-generation UCAs had been conducted in adults and children. Comprehensive protocols for clinical safety evaluations have demonstrated the highly favorable safety profile of UCA for intravenous, intravesical and other intracavitary uses. The safety data on CEUS continue to accumulate as this imaging modality is increasingly utilized in clinical settings worldwide. As of August 2021, 57 pediatric-only original research studies encompassing a total of 4,518 children with 4,906 intravenous CEUS examinations had been published. As in adults, there were a few adverse events; the majority of these were non-serious, although very rarely serious anaphylactic reactions were reported. In the published pediatric-only intravenous CEUS studies included in our analysis, the overall incidence rate of serious adverse events was 0.22% (10/4,518) of children and 0.20% (10/4,906) of all CEUS examinations. Non-serious adverse events from the intravenous CEUS were observed in 1.20% (54/4,518) of children and 1.10% (54/4,906) of CEUS examinations. During the same time period, 31 studies with the intravesical use of UCA were conducted in 12,362 children. A few non-serious adverse events were encountered (0.31%; 38/12,362), but these were most likely attributable to the bladder catheterization rather than the UCA. Other developing clinical applications of UCA in children, including intracavitary and intralymphatic, are ongoing. To date, no serious adverse events have been reported with these applications. This article reviews the existing pediatric CEUS literature and provides an overview of safety-related information reported from UCA uses in children.
Journal Article
Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents
by
Liu, Xiao Li
,
Zhang, Huan
,
Fan, Hai Ming
in
Atomic/Molecular Structure and Spectra
,
Biomedicine
,
Biotechnology
2023
Magnetic resonance imaging (MRI) has revolutionized medical imaging diagnostics with the advantages of non-invasive nature, absence of ionizing radiation, unrestricted penetration depth, high-resolution imaging of soft tissues, organs and blood vessels, and multi-parameter and multi-sequence imaging. Contrast agents (CAs) are crucial for enhancing image quality, detecting molecular-level changes, and providing comprehensive diagnostic information in contrast enhanced MRI. However, the performance of clinical Gd-based CAs represents a limitation to the improvement of MRI sensitivity, specificity, and versatility, thereby impeding the achievement of satisfactory imaging outcomes. In recent years, the development of magnetic nanoparticle-based CAs has emerged as a promising avenue to enhance the capabilities of MRI. Here, we review the advances in magnetic nanoparticle-based MRI CAs, including blood pool CAs, biochemically-targeted CAs, stimulus-responsive CAs, and ultra-high field MRI CAs, as well as the use of CAs for cell labeling and tracking. Additionally, we offer insights into the future prospects and challenges associated with the integration of these nanoparticles into clinical practice.
Journal Article
The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity - A systematic review
2017
Gadolinium based contrast agents (GBCAs) are widely used in magnetic resonance imaging, but recently, high signal intensity in the cerebellum structures was reported after repeated administrations of contrast- enhanced magnetic resonance images. The aim of this systematic review was to investigate the association between increased signal intensity in the dentate nucleus and globus pallidus in the brain and repeated administrations of GBCAs. Additionally, we focused on possible short- and long-term consequences of gadolinium use in those patients.
Systematic review of retrospective investigations in PubMed and Medline was performed in July 2016. Primary outcomes included the presence of increased signal intensity within the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in patients following administrations of GBCAs. Two independent reviewers were responsible for search and data extraction.
25 publications satisfied inclusion criteria (19 magnetic resonance images analyses, 3 case reports; 3 autopsy studies). Magnetic resonance images of 1247 patients with increased signal intensity on unenhanced T1-weighted MR images were analyzed as well as tissue specimens from 27 patients. Signal intensity correlated positively with the exposure to GBCAs and was greater after serial administrations of linear nonionic than cyclic contrast agents. Gadolinium was detected in all tissue examinations.
High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted magnetic resonance images were associated with previous administration of GBCAs. Signal intensity correlated negatively with stability of contrast agents. Clinical significance of gadolinium deposition in the brain remains unclear. There is a strong need for further research to identify type of gadolinium deposited in the brain as well as to gather knowledge about long-term consequences.
Journal Article
Exceedingly small iron oxide nanoparticles as positive MRI contrast agents
by
Farrar, Christian T.
,
Wiśniowska, Agata
,
Li, Nan
in
Albumins - chemistry
,
Albumins - pharmacokinetics
,
Animals
2017
Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T₁ contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.
Journal Article
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)
by
Waller, Laura
,
Chen, Michael
,
Phillips, Zachary F.
in
Analysis
,
Animals
,
Biology and Life Sciences
2017
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.
Journal Article