Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
778 result(s) for "correlated evolution"
Sort by:
The ancestral flower of angiosperms and its early diversification
Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms. The fossil record of flowers is limited, necessitating other approaches to understanding floral evolution. Here, Sauquet and colleagues reconstruct the characteristics and diversification of ancient angiosperm flowers by combining models of flower evolution with an extensive database of extant floral traits.
Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms
• Clonal reproduction is thought to facilitate polyploid establishment in the angiosperms, but the evolutionary relationship between polyploidy and clonality has not been thoroughly tested. A perennial life history may confer many of the same advantages, and the relative importance of clonality versus perenniality is unknown. • We used phylogenetic comparative analyses of 1751 species to examine associations between polyploidy, clonality, and life history. We test hypotheses of co-evolution by determining the sequence of trait development. • Polyploidy is associated with both clonality and perenniality across species, and analyses show that clonality can be an important predictor of polyploidy beyond perenniality. Tests of directionality on our full dataset suggest that polyploidy is more likely to promote clonality or perenniality than vice versa, although there are significant differences in patterns of co-evolution among major angiosperm groups. • Our results suggest that polyploidy and clonal reproduction are evolutionarily associated across the angiosperms, even when perenniality is considered, but we find little evidence at the whole-angiosperm level for the hypothesis that clonality promotes polyploidy. However, variation among different clades indicates that polyploidy and clonality are interacting in diverse ways, likely to be due to the variable roles of clonality in their evolutionary histories.
Adaptive and nonadaptive genome size evolution in Karst endemic flora of China
Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial. Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA). The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude. Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.
Polyploid species rely on vegetative reproduction more than diploids
Polyploidy is arguably the single most important genetic mechanism in plant speciation and diversification. It has been repeatedly suggested that polyploids show higher vegetative reproduction than diploids (to by-pass low fertility after the polyploidization), but there are no rigorous tests of it. Data were analysed by phylogenetic regressions of clonal growth parameters, and vegetative reproduction in culture on the ploidy status of a large set of species (approx. 900) from the Central European Angiosperm flora. Further, correlated evolution of ploidy and clonal traits was examined to determine whether or not polyploidy precedes vegetative reproduction. The analyses showed that polyploidy is strongly associated with vegetative reproduction, whereas diploids rely more on seed reproduction. The rate of polyploid speciation is strongly enhanced by the existence of vegetative reproduction (namely extensive lateral spread), whereas the converse is not true. These findings confirm the old hypothesis that polyploids can rely on vegetative reproduction which thus may save many incipient polyploids from extinction. A closer analysis also shows that the sequence of events begins with development of vegetative reproduction, which is then followed by polyploidy. Vegetative reproduction is thus likely to play an important role in polyploid speciation.
Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits
Premise A key question in plant dispersal via animal vectors is where and why fruit colors vary between species and how color relates to other fruit traits. To better understand the factors shaping the evolution of fruit color diversity, we tested for the existence of syndromes of traits (color, morphology, and nutrition) in the fruits of Viburnum . We placed these results in a larger phylogenetic context and reconstructed ancestral states to assess how Viburnum fruit traits have evolved across the clade. Results We find that blue Viburnum fruits are not very juicy, and have high lipid content and large, round endocarps surrounded by a small quantity of pulp. Red fruits display the opposite suite of traits: they are very juicy with low lipid content and smaller, flatter endocarps. The ancestral Viburnum fruit may have gone through a sequence of color changes before maturation (green to yellow to red to black), though our reconstructions are equivocal. In one major clade of Viburnum (Nectarotinus), fruits mature synchronously with reduced intermediate color stages. Most transitions between fruit colors occurred in this synchronously fruiting clade. Conclusions It is widely accepted that fruit trait diversity has primarily been driven by the differing perceptual abilities of bird versus mammal frugivores. Yet within a clade of largely bird-dispersed fruits, we find clear correlations between color, morphology, and nutrition. These correlations are likely driven by a shift from sequential to synchronous development, followed by diversification in color, nutrition, and morphology. A deeper understanding of fruit evolution within clades will elucidate the degree to which such syndromes structure extant fruit diversity.
Evo‐Scope: Fully automated assessment of correlated evolution on phylogenetic trees
Correlated evolution describes how multiple biological traits evolve together. Recently developed methods provide increasingly detailed results of correlated evolution, sometimes at elevated computational costs. Here, we present evo‐scope, a fast and fully automated pipeline with minimal input requirements to compute correlation between discrete traits evolving on a phylogenetic tree. Notably, we improve two of our previously developed tools that efficiently compute statistics of correlated evolution to characterize the nature, such as synergy or antagonism, and the strength of the interdependence between the traits. Furthermore, we improved the running time and implemented several additional features, such as genetic mapping, Bayesian Markov Chain Monte Carlo estimation, consideration of missing data and phylogenetic uncertainty. As an application, we scan a publicly available penicillin resistance data set of Streptococcus pneumoniae and characterize genetic mutations that correlate with antibiotic resistance. The pipeline is accessible both as a self‐contained Github repository (https://github.com/Maxime5G/EvoScope) and through a graphical galaxy interface (https://galaxy.pasteur.fr/u/maximeg/w/evoscope).
Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo
We describe a Bayesian method for investigating correlated evolution of discrete binary traits on phylogenetic trees. The method fits a continuous‐time Markov model to a pair of traits, seeking the best fitting models that describe their joint evolution on a phylogeny. We employ the methodology of reversible‐jump (RJ) Markov chain Monte Carlo to search among the large number of possible models, some of which conform to independent evolution of the two traits, others to correlated evolution. The RJ Markov chain visits these models in proportion to their posterior probabilities, thereby directly estimating the support for the hypothesis of correlated evolution. In addition, the RJ Markov chain simultaneously estimates the posterior distributions of the rate parameters of the model of trait evolution. These posterior distributions can be used to test among alternative evolutionary scenarios to explain the observed data. All results are integrated over a sample of phylogenetic trees to account for phylogenetic uncertainty. We implement the method in a program called RJ Discrete and illustrate it by analyzing the question of whether mating system and advertisement of estrus by females have coevolved in the Old World monkeys and great apes.
Female promiscuity promotes the evolution of faster sperm in cichlid fishes
Sperm competition, the contest among ejaculates from rival males to fertilize ova of a female, is a common and powerful evolutionary force influencing ejaculate traits. During competitive interactions between ejaculates, longer and faster spermatozoa are expected to have an edge; however, to date, there has been mixed support for this key prediction from sperm competition theory. Here, we use the spectacular radiation of cichlid fishes from Lake Tanganyika to examine sperm characteristics in 29 closely related species. We provide phylogenetically robust evidence that species experiencing greater levels of sperm competition have faster-swimming sperm. We also show that sperm competition selects for increases in the number, size, and longevity of spermatozoa in the ejaculate of a male, and, contrary to expectations from theory, we find no evidence of trade-offs among sperm traits in an interspecific analysis. Also, sperm swimming speed is positively correlated with sperm length among, but not within, species. These different responses to sperm competition at intra- and interspecific levels provide a simple, powerful explanation for equivocal results from previous studies. Using phylogenetic analyses, we also reconstructed the probable evolutionary route of trait evolution in this taxon, and show that, in response to increases in the magnitude of sperm competition, the evolution of sperm traits in this clade began with the evolution of faster (thus, more competitive) sperm.
The evolution of tail weaponization in amniotes
Weaponry, for the purpose of intraspecific combat or predator defence, is one of the most widespread animal adaptations, yet the selective pressures and constraints governing its phenotypic diversity and skeletal regionalization are not well understood. Here, we investigate the evolution of tail weaponry in amniotes, a rare form of weaponry that nonetheless evolved independently among a broad spectrum of life including mammals, turtles and dinosaurs. Using phylogenetic comparative methods, we test for links between morphology, ecology and behaviour in extant amniotes known to use the tail as a weapon, and in extinct taxa bearing osseous tail armaments. We find robust ecological and morphological correlates of both tail lashing behaviour and bony tail weaponry, including large body size, body armour and herbivory, suggesting these life-history parameters factor into the evolution of antipredator behaviours and tail armaments. We suggest that the evolution of tail weaponry is rare because large, armoured herbivores are uncommon in extant terrestrial faunas, as they have been throughout evolutionary history.
ASSEMBLING THE TREE OF THE MONOCOTYLEDONS: PLASTOME SEQUENCE PHYLOGENY AND EVOLUTION OF POALES
The order Poales comprises a substantial portion of plant life (7% of all angiosperms and 3 3% of monocots) and includes taxa of enormous economic and ecological significance. Molecular and morphological studies over the past two decades, however, leave uncertain many relationships within Poales and among allied commelinid orders. Here we present the results of an initial project by the Monocot AToL (Angiosperm Tree of Life) team on phylogeny and evolution in Poales, using sequence data for 81 plastid genes (exceeding 101 aligned kb) from 83 species of angiosperms. We recovered highly concordant relationships using maximum likelihood (ML) and maximum parsimony (MP), with 98.2% mean ML bootstrap support across monocots. For the first time, ML resolves ties among Poales and other commelinid orders with moderate to strong support. Analyses provide strong support for Bromeliaceae being sister to the rest of Poales; Typhaceae, Rapateaceae, and cyperids (sedges, rushes, and their allies) emerge next along the phylogenetic spine. Graminids (grasses and their allies) and restiids (Restionaceae and its allies) are well supported as sister taxa. MP identifies a xyrid clade (Eriocaulaceae, Mayacaceae, Xyridaceae) sister to cyperids, but ML (with much stronger support) places them as a grade with respect to restiids + graminids. The conflict in resolution between these analyses likely reflects long-branch attraction and highly elevated substitution rates in some Poales. All other familial relationships within the order are strongly supported by both MP and ML analyses. Character-state mapping implies that ancestral Poales lived in sunny, fire-prone, at least seasonally damp/wet, and possibly nutrient-poor sites, and were animal pollinated. Five subsequent shifts to wind pollination—in Typhaceae, cyperids, restiids, Ecdeiocoleaceae, and the vast PACCMAD-BEP clade of grasses—are significantly correlated with shifts to open habitats and small, inconspicuous, unisexual, and nectar-free flowers. Prime ecological movers driving the repeated evolution of wind pollination in Poales appear to include open habitats combined with the high local dominance of conspecific taxa, with the latter resulting from large-scale disturbances, combined with tall plant stature, vigorous vegetative spread, and positive ecological feedback. Reproductive assurance in the absence of reliable animal visitation probably favored wind pollination in annuals and short-statured perennials of Centrolepidaceae in ephemerally wet depressions and windswept alpine sites.