Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
838
result(s) for
"correlated responses"
Sort by:
Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig
by
Génétique Animale et Biologie Intégrative (GABI) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
,
Guillouet, Philippe
,
Sellier, Pierre
in
Agricultural sciences
,
Animal production studies
,
Animals
2012
Residual feed intake (RFI) has been explored as an alternative selection criterion to feed conversion ratio to capture the fraction of feed intake not explained by expected production and maintenance requirements. Selection experiments have found that low RFI in the growing pig is genetically correlated with reduced fatness and feed intake. Selection for feed conversion ratio also reduces sow appetite and fatness, which, together with increased prolificacy, has been seen as a hindrance for sow lifetime performance. The aims of our study were to derive equations for sow RFI during lactation (SRFI) and to evaluate the effect of selection for RFI during growth on sow traits during lactation. Data were obtained on 2 divergent lines selected for 7 generations for low and high RFI during growth in purebred Large Whites. The RFI was measured on candidates for selection (1,065 pigs), and sow performance data were available for 480 sows having from 1 to 3 parities (1,071 parities). Traits measured were sow daily feed intake (SDFI); sow BW and body composition before farrowing and at weaning (28.4 +/- 1.7d); number of piglets born total, born alive, and surviving at weaning; and litter weight, average piglet BW, and within-litter SD of piglet BW at birth, 21 d of age (when creep feeding was available), and weaning. Sow RFI was defined as the difference between observed SDFI and SDFI predicted for sow maintenance and production. Daily production requirements were quantified by litter size and daily litter BW gain as well as daily changes in sow body reserves. The SRFI represented 24% of the phenotypic variability of SDFI. Heritability estimates for RFI and SRFI were both 0.14. The genetic correlation between RFI and SRFI was 0.29 +/- 0.23. Genetic correlations of RFI with sow traits were low to moderate, consistent with responses to selection; selection for low RFI during growth reduced SDFI and increased number of piglets and litter growth, but also increased mobilization of body reserves. No effect on rebreeding performance was found. Metabolic changes previously observed during growth in response to selection might explain part of the better efficiency of the low-RFI sows, decreasing basal metabolism and favoring rapid allocation of resources to lactation. We propose to consider SRFI as an alternative to SDFI to select for efficient sows with reduced input demands during lactation.
Journal Article
Learning Ability and Longevity: A Symmetrical Evolutionary Trade-Off in Drosophila
by
Burger, Joep M. S.
,
Kawecki, Tadeusz J.
,
Pont, Juliette
in
Age-related memory impairment
,
Animal cognition
,
Animal populations
2008
Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melanogaster. Replicate populations selected for improved learning lived on average 15% shorter than the corresponding unselected control populations. They also showed a minor reduction in fecundity late in life and possibly a minor increase in dry adult mass. Selection for improved learning had no effect on egg-to-adult viability, development rate, or desiccation resistance. Because shortened longevity was the strongest correlated response to selection for improved learning, we also measured learning ability in another set of replicate populations that had been selected for extended longevity. In a classical olfactory conditioning assay, these long-lived flies showed an almost 40% reduction in learning ability early in life. This effect disappeared with age. Our results suggest a symmetrical evolutionary trade-off between learning ability and longevity in Drosophila.
Journal Article
Artificial selection on flowering time: influence on reproductive phenology across natural light environments
by
Burgess, Kevin S.
,
Galloway, Laura F.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
annuals
2012
1. Flowering time is frequently under selection due to a combination of abiotic, biotic and intrinsic factors. Evolution in response to this selection is likely to have broad effects, altering not only flowering time but reproductive phenology and, potentially, traits throughout the life cycle. We know little about the broader phenotypic changes associated with evolutionary shifts in flowering time, and the extent to which expression of these changes depends on local environmental conditions. 2. After three generations of selection for early‐ and late‐flowering, we grew plants of the herb Campanulastrum americanum in contrasting light environments (light gap and understorey) in its home population. 3. Response to selection on flowering time and correlated responses in reproductive phenology were expressed across light environments with the reproduction of early‐flowering lines being over 2 weeks ahead of late‐flowering lines. Plants in the understorey delayed initiation of flowering but accelerated flower deployment, fruit maturation and the end of reproduction, resulting in a condensed reproductive period. 4. Timing of seed dispersal influences whether offspring grow as annuals or biennials in C. americanum. Because evolution of flowering time shifted reproductive phenology, it is likely to alter life history frequency. In contrast, understorey habitats both delayed flowering and accelerated reproductive phenology, yielding no expected life history change. 5. Synthesis. Evolution of flowering time altered the phenology of all subsequent reproductive traits and is also likely to affect offspring traits. This ripple effect of changes in flowering time indicates that it is essential to recognize genetic and functional linkages among traits to understand potential life cycle consequences of selection on a single character.
Journal Article
QUANTITATIVE GENETICS OF GEOMETRIC SHAPE IN THE MOUSE MANDIBLE
by
Klingenberg, Christian Peter
,
Leamy, Larry J.
in
Additive genetic covariance matrix
,
Animals
,
constraint
2001
We combine the methods of geometric morphometrics and multivariate quantitative genetics to study the patterns of phenotypic and genetic variation of mandible shape in random-bred mice. The data are the positions of 11 landmarks on the mandibles of 1241 mice from a parent-offspring breeding design. We use Procrustes superimposition to extract shape variation and restricted maximum likelihood to estimate the additive genetic and environmental components of variance and covariance. Matrix permutation tests showed that the genetic and phenotypic as well as the genetic and environmental covariance matrices were similar, but not identical. Likewise, principal component analyses revealed correspondence in the patterns of phenotypic and genetic variation. Patterns revealed in these analyses also showed similarities to features previously found in the effects of quantitative trait loci and in the phenotypes generated in gene knockout experiments. We used the multivariate version of the breeders' equation to explore the potential for short-term response to selection on shape. In general, the correlated response is substantial and regularly exceeds the direct response: Selection applied locally to one landmark usually produces a response in other parts of the mandible as well. Moreover, even selection for shifts of the same landmark in different directions can yield dramatically different responses. These results demonstrate the role of the geometry and anatomical structure of the mandible, which are key determinants of the patterns of the genetic and phenotypic covariance matrices, in molding the potential for adaptive evolution. Corresponding Editor: J. Merilä
Journal Article
Potential of Using Spectral Reflectance Indices to Estimate Yield in Wheat Grown Under Reduced Irrigation
by
Prasad, B
,
Babar, M.A
,
van Ginkel, M
in
Agronomy. Soil science and plant productions
,
Biological and medical sciences
,
correlated responses
2006
The objectives of this research were to study the association in bread wheat between spectral reflectance indices (SRIs) and grain yield, estimate their heritability, and correlated response to selection (CR) for grain yield estimated from SRIs under reduced irrigation conditions. Reflectance was measured at three different growth stages (booting, heading and grainfilling) and five SRIs were calculated, namely normalized difference vegetation index (NDVI), simple ratio (SR), water index (WI), normalized water index-1 (NWI-1), and normalized water index-2 (NWI-2). Three field experiments were conducted (each with 30 advanced lines) in three different years. Two reduced irrigation environments were created: (1) one-irrigation level (pre-planting), and (2) two-irrigation level (pre-planting and at booting stage), both representing levels of reduced moisture. Maximum yield levels in the experimental zone were generally obtained with 4-6 irrigations. Genotypic variations for all SRIs were significant. Three NIR (near infrared radiation) based indices (WI, NWI-1, and NWI-2) gave the highest level of association (both phenotypic and genotypic) with grain yield under both reduced irrigation environments. Use of the mean SRI values averaged over growth stages and the progressive integration of SRIs from booting to grainfilling increased the capacity to explain variation among genotypes for yield under these reduced irrigation conditions. A higher level of broad-sense heritability was found with the two-irrigation environment (0.80) than with the one-irrigation environment (0.63). Overall, 50% to 75% of the 12.5% highest yielding genotypes, and 50% to 87% of the 25% highest yielding genotypes were selected when the NWI-2 index was applied as an indirect selection tool. Strong genetic correlations, moderate to high heritability, a correlated response for grain yield close to direct selection for grain yield, and a very high efficiency of selecting superior genotypes indicate the potential of using these three SRIs in breeding programs for selecting increased genetic gains in grain yield under reduced irrigation conditions.[PUBLICATION ABSTRACT]
Journal Article
Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb
by
Burgess, K.S
,
Etterson, J.R
,
Galloway, L.F
in
Anthropogenic factors
,
artificial selection
,
autopolyploidy
2007
There is mounting evidence that plants are responding to anthropogenic climate change with shifts in flowering phenologies. We conducted a three-generation artificial selection experiment on flowering time in Campanulastrum americanum, an autotetraploid herb, to determine the potential for adaptive evolution of this trait as well as possible costs associated with enhanced or delayed flowering. Divergent selection for earlier and later flowering resulted in a 25-day difference in flowering time. Experiment-wide heritability was 0.31 and 0.23 for the initiation of flowering in early and late lines, respectively. Selection for earlier flowering resulted in significant correlated responses in other traits including smaller size, fewer branches, smaller floral displays, longer fruit maturation times, fewer seeds per fruit and slower seed germination. Results suggest that although flowering time shows the potential to adapt to a changing climate, phenological shifts may be associated with reduced plant fitness possibly hindering evolutionary change.
Journal Article
Correlated selection responses of fiber properties measured by high volume instrument and advanced fiber information system in Upland cotton
by
Zeng, Linghe
,
Bechere, Efrem
in
advanced fiber information system
,
Biomedical and Life Sciences
,
Biotechnology
2017
Fiber properties measured by high volume instrument (HVI) and advanced fiber information system (AFIS) are currently being used in Upland cotton (
Gossypium hirsutum
L.) breeding. It would be interesting to know if it is equally efficient in selection for parameters measured by the two instrumental systems and how are the correlated selection responses of the parameters between the two systems. A study was designed to determine the correlated selection responses between fiber properties measured by the two systems in F
3
, F
4
, and F
5
generations of two crosses, FM 832 × SP 205 and MD 52ne × JJ 1145ne. Selections for HVI-fiber length, HVI-short fiber content, and HVI-maturity were made in the F
3
generation and the correlated responses of AFIS-fiber properties to the selections were estimated in the subsequent F
4
and F
5
generations. Selections for AFIS-fiber length, AFIS-short fiber content, and AFIS-maturity were made in the F
4
generation and the correlated responses of HVI-fiber properties to the selections were estimated in the F
5
generation. Moderate to high realized heritability was identified for both HVI- and AFIS-fiber properties. Significant correlated selection responses of fiber length and maturity between the HVI and AFIS methods were consistently observed in both crosses, suggesting similar genetic basis for fiber length and maturity measured by HVI and AFIS. Therefore, equal effectiveness is expected of the selection for both traits by the two instrumental systems. Correlated selection responses of short fiber content parameters between the HVI and AFIS methods were not consistent, suggesting a possible different genetic basis or differential variations of measurement quality between the two systems.
Journal Article
Artificial Selection to Increase the Phenotypic Variance in gmax Fails
2017
Stabilizing selection is important in evolutionary theories of the maintenance of genetic variance and has been invoked as the key process determining macroevolutionary patterns of trait evolution. However, manipulative evidence for the extent of stabilizing selection, particularly on multivariate traits, is lacking. We used artificial disruptive selection in Drosophila serrata as a tool to determine the relative strength of stabilizing selection experienced by multivariate trait combinations with contrasting levels of genetic and mutational variance. Contrary to expectation, when disruptive selection was applied to the major axis of standing genetic variance, gmax, we observed a significant and repeatable decrease in its phenotypic variance. In contrast, the multivariate trait combination predicted to be under strong stabilizing selection showed a significant and repeatable increase in its phenotypic variance. Correlated responses were observed in all selection treatments, and viability selection operating on extreme phenotypes of traits genetically correlated with those directly selected on limited our ability to increase their phenotypic range. Our manipulation revealed that multivariate trait combinations were subject to stabilizing selection; however, we did not observe a direct relationship between the strength of stabilizing selection and the levels of standing genetic variance in multivariate trait combinations. Contrasting patterns of allele frequencies underlying traits with high versus low levels of standing genetic variance may be implicated in determining the response to artificial selection in multivariate trait combinations.Stabilizing selection is important in evolutionary theories of the maintenance of genetic variance and has been invoked as the key process determining macroevolutionary patterns of trait evolution. However, manipulative evidence for the extent of stabilizing selection, particularly on multivariate traits, is lacking. We used artificial disruptive selection in Drosophila serrata as a tool to determine the relative strength of stabilizing selection experienced by multivariate trait combinations with contrasting levels of genetic and mutational variance. Contrary to expectation, when disruptive selection was applied to the major axis of standing genetic variance, gmax, we observed a significant and repeatable decrease in its phenotypic variance. In contrast, the multivariate trait combination predicted to be under strong stabilizing selection showed a significant and repeatable increase in its phenotypic variance. Correlated responses were observed in all selection treatments, and viability selection operating on extreme phenotypes of traits genetically correlated with those directly selected on limited our ability to increase their phenotypic range. Our manipulation revealed that multivariate trait combinations were subject to stabilizing selection; however, we did not observe a direct relationship between the strength of stabilizing selection and the levels of standing genetic variance in multivariate trait combinations. Contrasting patterns of allele frequencies underlying traits with high versus low levels of standing genetic variance may be implicated in determining the response to artificial selection in multivariate trait combinations.
Journal Article
Genetic Improvement of Wood Properties in Pinus kesiya Royle ex Gordon for Sawn Timber Production in Malawi
2016
Accurate prediction of genetic potential and response to selection in breeding requires knowledge of genetic parameters for important selection traits. In this study, we estimated genetic parameters for wood properties in Khasi pine (Pinus kesiya Royle ex Gordon) grown in Malawi. Data on wood properties and growth traits were collected from six families of Pinus kesiya at the age of 30. The results show that wood density had a higher genetic control (h2 = 0.595 ± 0.055) than wood stiffness (h2 = 0.559 ± 0.038) and wood strength (h2 = 0.542 ± 0.091). The genetic correlation among wood quality traits was significantly moderate (0.464 ± 0.061) to high (0.735 ± 0.025). The predicted genetic response indicated that selection for wood density at 10% selection intensity would increase stiffness and strength by 12.6% and 8.85%, respectively. The genetic correlations between growth and wood quality traits were moderately unfavourable. However, sufficient variation exists within the breeding population to select individuals with both good growth rate and high wood quality traits. It is therefore suggested that all trees with both diameter at breast height (DBH) greater than 32.0 cm and density greater than 0.593 g/cm3 must be selected in order to increase the efficiency of the breeding programme. However, in the long term, it is recommended that the best selection strategy would be to develop a multiple-trait selection index. The selection index should be developed using optimal index weights for the advanced Pinus kesiya breeding programme in Malawi.
Journal Article
Evolutionary change in flowering phenology in the iteroparous herb Beta vulgaris ssp. maritima: a search for the underlying mechanisms
2009
The potential for evolutionary change in flowering time has gained considerable attention in view of the current global climate change. To explore this potential and its underlying mechanisms in the iteroparous perennial Beta vulgaris ssp. maritima (sea beet), artificial selection for earlier and later flowering date was applied under semi-natural greenhouse conditions. Mean flowering date occurred more than 30 d earlier in 13 generations in the early selection line, but response was weaker in the late selection line. Taking advantage of the growing knowledge on the genetics and the physiology of flowering induction, particularly in Arabidopsis thaliana, the results obtained here were analysed in terms of the four different pathways of flowering induction known in this species. A first significant correlated response was stem elongation (bolting) in the vegetative stage, suggesting that plants were thus able to flower earlier as long as other requirements were satisfied. Vernalization had a clear influence on flowering date and its influence increased during the selection process, together with sensitivity to photoperiod. Vernalization and photoperiod could compensate for each other: each additional week of vernalization at 5 °C decreased the necessary daylength for flowering by about 15 min during the later selection stages, while in unselected plants, it was about 7 min. Devernalizing effects were observed at short days combined with higher temperatures. Special attention was given to the role of the B (bolting) gene that cancels the vernalization requirement. The results here obtained suggest that all four known pathways may simultaneously participate in evolutionary change.
Journal Article