Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
142 result(s) for "correlogram"
Sort by:
phylosignal: an R package to measure, test, and explore the phylogenetic signal
Phylogenetic signal is the tendency for closely related species to display similar trait values as a consequence of their phylogenetic proximity. Ecologists and evolutionary biologists are becoming increasingly interested in studying the phylogenetic signal and the processes which drive patterns of trait values in the phylogeny. Here, we present a new R package, phylosignal which provides a collection of tools to explore the phylogenetic signal for continuous biological traits. These tools are mainly based on the concept of autocorrelation and have been first developed in the field of spatial statistics. To illustrate the use of the package, we analyze the phylogenetic signal in pollution sensitivity for 17 species of diatoms. We present a new R package to measure, test, and explore the phylogenetic signal in biological traits. The package implements functions to plot data, indices to measure the signal, and original methods imported from spatial statistics.
Estimating the Leaf Water Status and Grain Yield of Wheat under Different Irrigation Regimes Using Optimized Two- and Three-Band Hyperspectral Indices and Multivariate Regression Models
Spectral reflectance indices (SRIs) often show inconsistency in estimating plant traits across different growth conditions; thus, it is still necessary to develop further optimized SRIs to guarantee the performance of SRIs as a simple and rapid approach to accurately estimate plant traits. The primary goal of this study was to develop optimized two- and three-band vegetation- and water-SRIs and to apply different multivariate regression models based on these SRIs for accurately estimating the relative water content (RWC), gravimetric water content (GWCF), and grain yield (GY) of two wheat cultivars evaluated under three irrigation regimes (100%, 75%, and 50% of crop evapotranspiration (ETc)) for two seasons. Results showed that the three plant traits and all SRIs showed significant differences (p < 0.05) between the three irrigation treatments for each wheat cultivar. The three-band water-SRIs (NWIs-3b) showed the best performance in estimating the three plant traits for both cultivars (R2 > 0.80), and RWC and GWCF under 75% ETc (R2 ≥ 0.65). Four out of six three-band vegetation-SRIs (NDVIs-3b) performed better than any other SRIs for estimating GY under 100% ETc and 50% ETC, and RWC under 100% ETc (R2 ≥ 0.60). All types of SRIs demonstrated excellent performance in estimating the three plant traits (R2 ≥ 0.70) when the data of all growth conditions were combined and analyzed together. The NWIs-3b coupled with Random Forest models predicted the three plant traits with satisfactory accuracy for the calibration (R2 ≥ 0.96) and validation (R2 ≥ 0.93) datasets. The overall results of this study elucidate that extracting an optimized NWIs-3b from the full spectrum data and combined with an appropriate regression technique could be a practical approach for managing deficit irrigation regimes of crops through accurately, timely, and non-destructively monitoring the water status and final potential yield.
Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt
Standard methods are limited for monitoring and managing water quality indicators (WQIs) in real-time and on a large scale. Consequently, there is an urgent need to use reliable, practical, swift, and cost-effective monitoring tools that can be easily deployed and assist decision makers in assessing key indicators relevant to surface water quality in a comprehensive manner. Surface water samples were collected and evaluated for water quality at 16 distinct sites across the Qaroun Lake in 2018 and 2019. Different WQIs, including total dissolved solids (TDS), transparency, total suspended solids (TSS), chlorophyll-a (Chl-a), and total phosphorus (TP), were tested for aquatic utilization. An integrated approach comprising WQIs, geospatial techniques, hyperspectral reflectance indices (SRIs) (commonly used SRIs, two-band and three-band SRIs (Spectral index calculated from water spectral reflectance of two or three wavelengths)), and partial least square regression (PLSR) models were used to assess the water quality of Qaroun Lake. According to the findings, the water quality attributes are polluted to varying degrees. The majority of commonly used SRIs presented moderately relationship with four WQIs (transparency, TSS, Chl-a, and TP) (R2 = 0.45 to 0.64), while the majority of newly two-band SRIs (NSRIs-2b) indicated moderate to strong relationships with WQIs (R2 = 0.51 to 0.74), and the majority of newly three band SRIs (NSRIs-3b) presented strong relationships with WQIs (R2 = 0.67 to 0.81). Broadly, the highest coefficients of determination were noticed with the NSRIs-3b followed by the NSRIs-2b and then the commonly used SRIs. For example, the NSRIs-3b (NDSI648,712,696) had stronger relationships with transparency, TSS, and Chl-a with R2 = 0.77, 0.66, and 0.81, respectively, than other SRIs. In addition, the NSRIs-3b (NDSI620,610,622) showed the highest R2 of 0.73 with TSS. The NSRIs-3b coupling with PLSR predicted the WQIs with satisfactory accuracy in the calibration (reach up R2 = 0.85) and validation (reach up R2 = 0.81) datasets. The overall findings of this research study showed that deriving an optimized NSRIs-3b from spectrum region and combining it with PLSR model could be a practical tool for managing water quality of the Qaroun Lake by accurately, timely, and non-destructively monitoring the WQIs.
Detection for melanoma skin cancer through ACCF, BPPF, and CLF techniques with machine learning approach
Intense sun exposure is a major risk factor for the development of melanoma, an abnormal proliferation of skin cells. Yet, this more prevalent type of skin cancer can also develop in less-exposed areas, such as those that are shaded. Melanoma is the sixth most common type of skin cancer. In recent years, computer-based methods for imaging and analyzing biological systems have made considerable strides. This work investigates the use of advanced machine learning methods, specifically ensemble models with Auto Correlogram Methods, Binary Pyramid Pattern Filter, and Color Layout Filter, to enhance the detection accuracy of Melanoma skin cancer. These results suggest that the Color Layout Filter model of the Attribute Selection Classifier provides the best overall performance. Statistics for ROC, PRC, Kappa, F-Measure, and Matthews Correlation Coefficient were as follows: 90.96% accuracy, 0.91 precision, 0.91 recall, 0.95 ROC, 0.87 PRC, 0.87 Kappa, 0.91 F-Measure, and 0.82 Matthews Correlation Coefficient. In addition, its margins of error are the smallest. The research found that the Attribute Selection Classifier performed well when used in conjunction with the Color Layout Filter to improve image quality.
Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study
The Mantel correlogram is an elegant way to compute a correlogram for multivariate data. However, recent papers raised concerns about the power of the Mantel test itself. Hence the question: Is the Mantel correlogram powerful enough to be useful? To explore this issue, we compared the performances of the Mantel correlogram to those of other methods, using numerical simulations based on random, normally distributed data. For a single response variable, we compared it to the Moran and Geary correlograms. Type I error rates of the three methods were correct. Power of the Mantel correlogram was nearly as high as that of the univariate methods. For the multivariate case, the test of the multivariate variogram developed in the context of multiscale ordination is in fact a Mantel test, so that the power of the two methods is the same by definition. We devised an alternative permutation test based on the variance, which yielded similar results. Overall, the power of the Mantel test was high, the method successfully detecting spatial correlation at rates similar to the permutation test of the variance statistic in multivariate variograms. We conclude that the Mantel correlogram deserves its place in the ecologist's toolbox.
Enhanced kinship verification analysis based on color and texture handcrafted techniques
Nowadays, kinship verification is an attractive research area within computer vision. It significantly affects applications in the real world, such as finding missing individuals and forensics. Despite the importance of this research topic, it still faces many challenges, such as low accuracy and illumination variations. Due to the existence of different classes of feature extraction techniques, different types of information can be extracted from the input data. Moreover, the fusion power produces complementary information that can address kinship verification problems. Therefore, this paper proposes a new approach for verifying kinship by fusing features from different perspectives, including color-texture and color features in different color spaces. Besides using promising methods in the field, such as local binary pattern (LBP) and scale-invariant feature transform (SIFT), the paper utilizes other feature extraction methods, which are heterogeneous auto-similarities of characteristics (HASC), color correlogram (CC), and dense color histogram (DCH). As far as we know, these features haven’t been employed before in this research area. Accordingly, the proposed approach goes into six stages: preprocessing, feature extraction, feature normalization, feature fusion, feature representation, and kinship verification. The proposed approach was evaluated on the KinFaceW-I and KinFaceW-II field standard datasets, achieving maximum accuracy of 79.54% and 90.65%, respectively. Compared with many state-of-the-art approaches, the results of the proposed approach reflect the promising achievements and encourage the authors to plan for future enhancement.
Patients Prefer a Virtual Reality Approach Over a Similarly Performing Screen-Based Approach for Continuous Oculomotor-Based Screening of Glaucomatous and Neuro-Ophthalmological Visual Field Defects
Standard automated perimetry (SAP) is the gold standard for evaluating the presence of visual field defects (VFDs). Nevertheless, it has requirements such as prolonged attention, stable fixation, and a need for a motor response that limit application in various patient groups. Therefore, a novel approach using eye movements (EMs) – as a complementary technique to SAP – was developed and tested in clinical settings by our group. However, the original method uses a screen-based eye-tracker which still requires participants to keep their chin and head stable. Virtual reality (VR) has shown much promise in ophthalmic diagnostics – especially in terms of freedom of head movement and precise control over experimental settings, besides being portable. In this study, we set out to see if patients can be screened for VFDs based on their EM in a VR-based framework and if they are comparable to the screen-based eyetracker. Moreover, we wanted to know if this framework can provide an effective and enjoyable user experience (UX) compared to our previous approach and the conventional SAP. Therefore, we first modified our method and implemented it on a VR head-mounted device with built-in eye tracking. Subsequently, 15 controls naïve to SAP, 15 patients with a neuro-ophthalmological disorder, and 15 glaucoma patients performed three tasks in a counterbalanced manner: (1) a visual tracking task on the VR headset while their EM was recorded, (2) the preceding tracking task but on a conventional screen-based eye tracker, and (3) SAP. We then quantified the spatio-temporal properties (STP) of the EM of each group using a cross-correlogram analysis. Finally, we evaluated the human–computer interaction (HCI) aspects of the participants in the three methods using a user-experience questionnaire. We find that: (1) the VR framework can distinguish the participants according to their oculomotor characteristics; (2) the STP of the VR framework are similar to those from the screen-based eye tracker; and (3) participants from all the groups found the VR-screening test to be the most attractive. Thus, we conclude that the EM-based approach implemented in VR can be a user-friendly and portable companion to complement existing perimetric techniques in ophthalmic clinics.
Multiple regression on distance matrices: a multivariate spatial analysis tool
I explore the use of multiple regression on distance matrices (MRM), an extension of partial Mantel analysis, in spatial analysis of ecological data. MRM involves a multiple regression of a response matrix on any number of explanatory matrices, where each matrix contains distances or similarities (in terms of ecological, spatial, or other attributes) between all pair-wise combinations of n objects (sample units); tests of statistical significance are performed by permutation. The method is flexible in terms of the types of data that may be analyzed (counts, presence-absence, continuous, categorical) and the shapes of response curves. MRM offers several advantages over traditional partial Mantel analysis: (1) separating environmental distances into distinct distance matrices allows inferences to be made at the level of individual variables; (2) nonparametric or nonlinear multiple regression methods may be employed; and (3) spatial autocorrelation may be quantified and tested at different spatial scales using a series of lag matrices, each representing a geographic distance class. The MRM lag matrices model may be parameterized to yield very similar inferences regarding spatial autocorrelation as the Mantel correlogram. Unlike the correlogram, however, the lag matrices model may also include environmental distance matrices, so that spatial patterns in species abundance distances (community similarity) may be quantified while controlling for the environmental similarity between sites. Examples of spatial analyses with MRM are presented.
Optimization of soybean physiochemical, agronomic, and genetic responses under varying regimes of day and night temperatures
Soybean is an important oilseed crop worldwide; however, it has a high sensitivity to temperature variation, particularly at the vegetative stage to the pod-filling stage. Temperature change affects physiochemical and genetic traits regulating the soybean agronomic yield. In this regard, the current study aimed to comparatively evaluate the effects of varying regimes of day and night temperatures (T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/22°C, T4 = 35°C/27°C, and T5 = 40°C/32°C) on physiological (chlorophyll, photosynthesis, stomatal conductance, transpiration, and membrane damage) biochemical (proline and antioxidant enzymes), genetic ( GmDNJ1 , GmDREB1G;1 , GmHSF-34 , GmPYL21 , GmPIF4b , GmPIP1;6 , GmGBP1 , GmHsp90A2 , GmTIP2;6 , and GmEF8 ), and agronomic traits (pods per plant, seeds per plant, pod weight per plant, and seed yield per plant) of soybean cultivars (Swat-84 and NARC-1). The experiment was performed in soil plant atmosphere research (SPAR) units using two factorial arrangements with cultivars as one factor and temperature treatments as another factor. A significant increase in physiological, biochemical, and agronomic traits with increased gene expression was observed in both soybean cultivars at T4 (35°C/27°C) as compared to below and above regimes of temperatures. Additionally, it was established by correlation, principal component analysis (PCA), and heatmap analysis that the nature of soybean cultivars and the type of temperature treatments have a significant impact on the paired association of agronomic and biochemical traits, which in turn affects agronomic productivity. Furthermore, at corresponding temperature regimes, the expression of the genes matched the expression of physiochemical traits. The current study has demonstrated through extensive physiochemical, genetic, and biochemical analyses that the ideal day and night temperature for soybeans is T4 (35°C/27°C), with a small variation having a significant impact on productivity from the vegetative stage to the grain-filling stage.
Simple mathematical model for predicting COVID-19 outbreaks in Japan based on epidemic waves with a cyclical trend
Background Several models have been used to predict outbreaks during the COVID-19 pandemic, with limited success. We developed a simple mathematical model to accurately predict future epidemic waves. Methods We used data from the Ministry of Health, Labour and Welfare of Japan for newly confirmed COVID-19 cases. COVID-19 case data were summarized as weekly data, and epidemic waves were visualized and identified. The periodicity of COVID-19 in each prefecture of Japan was confirmed using time-series analysis and the autocorrelation coefficient, which was used to investigate the longer-term pattern of COVID-19 cases. Outcomes using the autocorrelation coefficient were visualized via a correlogram to capture the periodicity of the data. An algorithm for a simple prediction model of the seventh COVID-19 wave in Japan comprised three steps. Step 1: machine learning techniques were used to depict the regression lines for each epidemic wave, denoting the “rising trend line”; Step 2: an exponential function with good fit was identified from data of rising straight lines up to the sixth wave, and the timing of the rise of the seventh wave and speed of its spread were calculated; Step 3: a logistic function was created using the values calculated in Step 2 as coefficients to predict the seventh wave. The accuracy of the model in predicting the seventh wave was confirmed using data up to the sixth wave. Results Up to March 31, 2023, the correlation coefficient value was approximately 0.5, indicating significant periodicity. The spread of COVID-19 in Japan was repeated in a cycle of approximately 140 days. Although there was a slight lag in the starting and peak times in our predicted seventh wave compared with the actual epidemic, our developed prediction model had a fairly high degree of accuracy. Conclusion Our newly developed prediction model based on the rising trend line could predict COVID-19 outbreaks up to a few months in advance with high accuracy. The findings of the present study warrant further investigation regarding application to emerging infectious diseases other than COVID-19 in which the epidemic wave has high periodicity.