Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
271 result(s) for "coverage path planning"
Sort by:
Sensor-based complete coverage path planning in dynamic environment for cleaning robot
Using Complete Coverage Path Planning (CCPP), a cleaning robot could visit every accessible area in the workspace. The dynamic environment requires the higher computation of the CCPP algorithm because the path needs to be replanned when the path might become invalid. In previous CCPP methods, when the neighbours of the current position are obstacles or have been visited, it is challenging for the robot to escape from the deadlocks with the least extra time cost. In this study, a novel CCPP algorithm is proposed to deal with deadlock problems in a dynamic environment. A priority template inspired by the short memory model could reduce the number of deadlocks by giving the priority of directions. Simultaneously, a global backtracking mechanism guides the robot to move to the next unvisited area quickly, taking the use of the explored global environmental information. What's more, the authors extend their CCPP algorithm to a multi-robot system with a market-based bidding process which could deploy the coverage time. Experiments of apartment-like scenes show that the authors’ proposed algorithm can guarantee an efficient collision-free coverage in dynamic environments. The proposed method performs better than related approaches on coverage rate and overlap length.
On the Complete Coverage Path Planning for Mobile Robots
This paper presents a generalized complete coverage path planning (CCPP) algorithm and its implementation for a mobile robot. The proposed planner contains two concerns: 1) low working time or low energy consumption, and 2) high human safety. For the first concern, we design the optimal path by incorporating two factors: time and energy costs. Describing the working time and energy in terms of a turning parameter simplifies the optimal path design either for minimizing the time or energy cost. For obstacle avoidance in the CCPP, fixed or moving objects are avoided by proposing a field method describing the effects of factors such as working dangerousness and difficulty on the current robot navigation. The human safety is simultaneously guaranteed by this method. Furthermore, a backstepping controller considering constraints imposed on the control input is established to track the optimal route. An implementation of the proposed CCPP for the experimentally mobile robot equipped with this controller is presented; the verification results demonstrate significant performance and practicality of the proposed strategy.
Dynamic Optimization and Heuristics Based Online Coverage Path Planning in 3D Environment for UAVs
Path planning is one of the most important issues in the robotics field, being applied in many domains ranging from aerospace technology and military tasks to manufacturing and agriculture. Path planning is a branch of autonomous navigation. In autonomous navigation, dynamic decisions about the path have to be taken while the robot moves towards its goal. Among the navigation area, an important class of problems is Coverage Path Planning (CPP). The CPP technique is associated with determining a collision-free path that passes through all viewpoints in a specific area. This paper presents a method to perform CPP in 3D environment for Unmanned Aerial Vehicles (UAVs) applications, namely 3D dynamic for CPP applications (3DD-CPP). The proposed method can be deployed in an unknown environment through a combination of linear optimization and heuristics. A model to estimate cost matrices accounting for UAV power usage is proposed and evaluated for a few different flight speeds. As linear optimization methods can be computationally demanding to be used on-board a UAV, this work also proposes a distributed execution of the algorithm through fog-edge computing. Results showed that 3DD-CPP had a good performance in both local execution and fog-edge for different simulated scenarios. The proposed heuristic is capable of re-optimization, enabling execution in environments with local knowledge of the environments.
Multi UAV Coverage Path Planning in Urban Environments
Coverage path planning (CPP) is a field of study which objective is to find a path that covers every point of a certain area of interest. Recently, the use of Unmanned Aerial Vehicles (UAVs) has become more proficient in various applications such as surveillance, terrain coverage, mapping, natural disaster tracking, transport, and others. The aim of this paper is to design efficient coverage path planning collision-avoidance capable algorithms for single or multi UAV systems in cluttered urban environments. Two algorithms are developed and explored: one of them plans paths to cover a target zone delimited by a given perimeter with predefined coverage height and bandwidth, using a boustrophedon flight pattern, while the other proposed algorithm follows a set of predefined viewpoints, calculating a smooth path that ensures that the UAVs pass over the objectives. Both algorithms have been developed for a scalable number of UAVs, which fly in a triangular deformable leader-follower formation with the leader at its front. In the case of an even number of UAVs, there is no leader at the front of the formation and a virtual leader is used to plan the paths of the followers. The presented algorithms also have collision avoidance capabilities, powered by the Fast Marching Square algorithm. These algorithms are tested in various simulated urban and cluttered environments, and they prove capable of providing safe and smooth paths for the UAV formation in urban environments.
Exact and Heuristic Multi-Robot Dubins Coverage Path Planning for Known Environments
Coverage path planning (CPP) of multiple Dubins robots has been extensively applied in aerial monitoring, marine exploration, and search and rescue. Existing multi-robot coverage path planning (MCPP) research use exact or heuristic algorithms to address coverage applications. However, several exact algorithms always provide precise area division rather than coverage paths, and heuristic methods face the challenge of balancing accuracy and complexity. This paper focuses on the Dubins MCPP problem of known environments. Firstly, we present an exact Dubins multi-robot coverage path planning (EDM) algorithm based on mixed linear integer programming (MILP). The EDM algorithm searches the entire solution space to obtain the shortest Dubins coverage path. Secondly, a heuristic approximate credit-based Dubins multi-robot coverage path planning (CDM) algorithm is presented, which utilizes the credit model to balance tasks among robots and a tree partition strategy to reduce complexity. Comparison experiments with other exact and approximate algorithms demonstrate that EDM provides the least coverage time in small scenes, and CDM produces a shorter coverage time and less computation time in large scenes. Feasibility experiments demonstrate the applicability of EDM and CDM to a high-fidelity fixed-wing unmanned aerial vehicle (UAV) model.
Coverage Path Planning Methods Focusing on Energy Efficient and Cooperative Strategies for Unmanned Aerial Vehicles
The coverage path planning (CPP) algorithms aim to cover the total area of interest with minimum overlapping. The goal of the CPP algorithms is to minimize the total covering path and execution time. Significant research has been done in robotics, particularly for multi-unmanned unmanned aerial vehicles (UAVs) cooperation and energy efficiency in CPP problems. This paper presents a review of the early-stage CPP methods in the robotics field. Furthermore, we discuss multi-UAV CPP strategies and focus on energy-saving CPP algorithms. Likewise, we aim to present a comparison between energy efficient CPP algorithms and directions for future research.
Biologically Inspired Complete Coverage Path Planning Algorithm Based on Q-Learning
Complete coverage path planning requires that the mobile robot traverse all reachable positions in the environmental map. Aiming at the problems of local optimal path and high path coverage ratio in the complete coverage path planning of the traditional biologically inspired neural network algorithm, a complete coverage path planning algorithm based on Q-learning is proposed. The global environment information is introduced by the reinforcement learning method in the proposed algorithm. In addition, the Q-learning method is used for path planning at the positions where the accessible path points are changed, which optimizes the path planning strategy of the original algorithm near these obstacles. Simulation results show that the algorithm can automatically generate an orderly path in the environmental map, and achieve 100% coverage with a lower path repetition ratio.
Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time
This paper presents a solution for the problem of minimum time coverage of ground areas using a group of unmanned air vehicles (UAVs) equipped with image sensors. The solution is divided into two parts: (i) the task modeling as a graph whose vertices are geographic coordinates determined in such a way that a single UAV would cover the area in minimum time; and (ii) the solution of a mixed integer linear programming problem, formulated according to the graph variables defined in the first part, to route the team of UAVs over the area. The main contribution of the proposed methodology, when compared with the traditional vehicle routing problem’s (VRP) solutions, is the fact that our method solves some practical problems only encountered during the execution of the task with actual UAVs. In this line, one of the main contributions of the paper is that the number of UAVs used to cover the area is automatically selected by solving the optimization problem. The number of UAVs is influenced by the vehicles’ maximum flight time and by the setup time, which is the time needed to prepare and launch a UAV. To illustrate the methodology, the paper presents experimental results obtained with two hand-launched, fixed-wing UAVs.
A Multi-Robot Coverage Path Planning Method for Maritime Search and Rescue Using Multiple AUVs
In this study, we focus on the Multi-robot Coverage Path Planning (MCPP) problem for maritime Search And Rescue (SAR) missions using a multiple Autonomous Underwater Vehicle (AUV) system, with the ultimate purpose of efficiently and accurately discovering the target from sonar images taken by Side-Scan Sonar (SSS) mounted on the AUVs. Considering the specificities of real maritime SAR projects, we propose a novel MCPP method, in which the MCPP problem is transformed into two sub-problems: Area partitioning and single-AUV coverage path planning. The structure of the task area is first defined using Morse decomposition of the spike pattern. The area partitioning problem is then formulated as an AUV ordering problem, which is solved by developing a customized backtracking method to balance the workload and to avoid segmentation of the possible target area. As for the single-AUV coverage path planning problem, the SAR-A* method is adopted, which generates a path that preferentially visits the possible target areas and reduces the number of turns to guarantee the high quality of the resulting sonar images. Simulation results demonstrate that the proposed method can maintain the workload balance and significantly improve the efficiency and accuracy of discovering the target. Moreover, our experimental results indicate that the proposed method is practical and the mentioned specificities are useful for discovering targets.
Fast Multi-UAV Path Planning for Optimal Area Coverage in Aerial Sensing Applications
This paper deals with the problems and the solutions of fast coverage path planning (CPP) for multiple UAVs. Through this research, the problem is solved and analyzed with both a software framework and algorithm. The implemented algorithm generates a back-and-forth path based on the onboard sensor footprint. In addition, three methods are proposed for the individual path assignment: simple bin packing trajectory planner (SIMPLE-BINPAT); bin packing trajectory planner (BINPAT); and Powell optimized bin packing trajectory planner (POWELL-BINPAT). The three methods use heuristic algorithms, linear sum assignment, and minimization techniques to optimize the planning task. Furthermore, this approach is implemented with applicable software to be easily used by first responders such as police and firefighters. In addition, simulation and real-world experiments were performed using UAVs with RGB and thermal cameras. The results show that POWELL-BINPAT generates optimal UAV paths to complete the entire mission in minimum time. Furthermore, the computation time for the trajectory generation task decreases compared to other techniques in the literature. This research is part of a real project funded by the H2020 FASTER Project, with grant ID: 833507.