Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
166 result(s) for "crop yield-gap"
Sort by:
Demonstrating the Use of the Yield-Gap Concept on Crop Model Calibration in Data-Poor Regions: An Application to CERES-Wheat Crop Model in Greece
Yield estimations at global or regional spatial scales have been compromised due to poor crop model calibration. A methodology for estimating the genetic parameters related to grain growth and yield for the CERES-Wheat crop model is proposed based on yield gap concept, the GLUE coefficient estimator, and the global yield gap atlas (GYGA). Yield trials with three durum wheat cultivars in an experimental farm in northern Greece from 2004 to 2010 were used. The calibration strategy conducted with CERES-Wheat (embedded in DSSAT v.4.7.5) on potential mode taking into account the year-to-year variability of relative yield gap Yrg (YgC_adj) was: (i) more effective than using the average site value of Yrg (YgC_unadj) only (the relative RMSE ranged from 10 to 13% for the YgC_adj vs. 48 to 57% for YgC_unadj) and (ii) superior (slightly inferior) to the strategy conducted with DSSAT v.4.7.5 (DSSAT v.3.5—relative RMSE of 5 to 8% were found) on rainfed mode. Earlier anthesis, maturity, and decreased potential yield (from 2.2 to 3.9% for 2021–2050, and from 5.0 to 7.1% for 2071–2100), due to increased temperature and solar radiation, were found using an ensemble of 11 EURO-CORDEX regional climate model simulations. In conclusion, the proposed strategy provides a scientifically robust guideline for crop model calibration that minimizes input requirements due to operating the crop model on potential mode. Further testing of this methodology is required with different plants, crop models, and environments.
Closing the yield gap while ensuring water sustainability
Water is a major factor limiting crop production in many regions around the world. Irrigation can greatly enhance crop yields, but the local availability and timing of freshwater resources constrains the ability of humanity to increase food production. Innovations in irrigation infrastructure have allowed humanity to utilize previously inaccessible water resources, enhancing water withdrawals for agriculture while increasing pressure on environmental flows and other human uses. While substantial additional water will be required to support future food production, it is not clear whether and where freshwater availability is sufficient to sustainably close the yield gap in cultivated lands. The extent to which irrigation can be expanded within presently rainfed cropland without depleting environmental flows remains poorly understood. Here we perform a spatially explicit biophysical assessment of global consumptive water use for crop production under current and maximum attainable yield scenarios assuming current cropping practices. We then compare these present and anticipated water consumptions to local water availability to examine potential changes in water scarcity. We find that global water consumption for irrigation could sustainably increase by 48% (408 km3 H2O yr−1)-expanding irrigation to 26% of currently rainfed cultivated lands (2.67 × 106 km2) and producing 37% (3.38 × 1015 kcal yr−1) more calories, enough to feed an additional 2.8 billion people. If current unsustainable blue water consumption (336 km3 yr−1) and production (1.19 × 1015 kcal yr−1) practices were eliminated, a sustainable irrigation expansion and intensification would still enable a 24% increase in calorie (2.19 × 1015 kcal yr−1) production. Collectively, these results show that the sustainable expansion and intensification of irrigation in selected croplands could contribute substantially to achieving food security and environmental goals in tandem in the coming decades.
Identifying gaps in actual and simulated/potential yield and growing season precipitation in Morocco
The influence of growing season rainfall on agricultural production is indisputable. In Morocco, the production of crops such as barley, maize, and wheat is impacted by growing season rainfall. Due to persistent gaps in growing season rainfall and other drivers of crop yield, crops have experienced observed yields that are often below projected or potential yields. However, there are currently no studies that have quantified these gaps in yield and growing season rainfall in Morocco. To achieve this objective, time-series crop yield for all three crops and growing season rainfall data for the period 1991–2020 were collected from FAOSTAT and the World Bank climate portal, respectively. Growing season rainfall and crop yield data for the spatial variations were culled from System National de Suivi Agrometeorologique (GCMS) and the yield gaps atlas, respectively, for the same historical period. The data were subjected to bias correction to handle uncertainty. The projected/simulated crop yields and growing season rainfall were computed by regression analysis. Crop yield and growing season rainfall gaps were determined by establishing the difference between the projected and observed crop yields and rainfall data. The results show that observed and simulated wheat have a stronger relationship when compared to the other crops. Also, most years with crop yield gaps are associated with growing season rainfall gaps. Wheat records the lowest number of years with yield gaps and the highest number of years with growing season rainfall gaps during the entire data series. Therefore, even though yield gaps are strongly tied to growing season rainfall gaps, it is not the case for wheat, and therefore other drivers might be important because wheat has the lowest number of years with crop yield gaps and the highest number of years with growing season rainfall gaps. Spatially, yield and growing season rainfall gaps decline with increased latitude. The broader perspective and policy implication here is that a better understanding of yield and growing season rainfall gaps mandates an understanding of growing season rainfall and other drivers of yield. As a way forward, potential research should focus on identifying the drivers of yield gaps, sub-national experimentation at the plot level as well as on closing yield gaps through water and nutrient management.
Drivers of household food availability in sub-Saharan Africa based on big data from small farms
We calculated a simple indicator of food availability using data from 93 sites in 17 countries across contrasted agroecologies in sub-Saharan Africa (>13,000 farm households) and analyzed the drivers of variations in food availability. Crop production was the major source of energy, contributing 60% of food availability. The off-farm income contribution to food availability ranged from 12% for households without enough food available (18% of the total sample) to 27% for the 58% of households with sufficient food available. Using only three explanatory variables (household size, number of livestock, and land area), we were able to predict correctly the agricultural determined status of food availability for 72% of the households, but the relationships were strongly influenced by the degree of market access. Our analyses suggest that targeting poverty through improving market access and off-farm opportunities is a better strategy to increase food security than focusing on agricultural production and closing yield gaps. This calls for multisectoral policy harmonization, incentives, and diversification of employment sources rather than a singular focus on agricultural development. Recognizing and understanding diversity among smallholder farm households in sub-Saharan Africa is key for the design of policies that aim to improve food security.
Mind the gap: how do climate and agricultural management explain the 'yield gap' of croplands around the world
As the demands for food, feed and fuel increase in coming decades, society will be pressed to increase agricultural production - whether by increasing yields on already cultivated lands or by cultivating currently natural areas - or to change current crop consumption patterns. In this analysis, we consider where yields might be increased on existing croplands, and how crop yields are constrained by biophysical (e.g. climate) versus management factors. This study was conducted at the global scale. Using spatial datasets, we compare yield patterns for the 18 most dominant crops within regions of similar climate. We use this comparison to evaluate the potential yield obtainable for each crop in different climates around the world. We then compare the actual yields currently being achieved for each crop with their 'climatic potential yield' to estimate the 'yield gap'. We present spatial datasets of both the climatic potential yields and yield gap patterns for 18 crops around the year 2000. These datasets depict the regions of the world that meet their climatic potential, and highlight places where yields might potentially be raised. Most often, low yield gaps are concentrated in developed countries or in regions with relatively high-input agriculture. While biophysical factors like climate are key drivers of global crop yield patterns, controlling for them demonstrates that there are still considerable ranges in yields attributable to other factors, like land management practices. With conventional practices, bringing crop yields up to their climatic potential would probably require more chemical, nutrient and water inputs. These intensive land management practices can adversely affect ecosystem goods and services, and in turn human welfare. Until society develops more sustainable high-yielding cropping practices, the trade-offs between increased crop productivity and social and ecological factors need to be made explicit when future food scenarios are formulated.
Possible changes to arable crop yields by 2050
By 2050, the world population is likely to be 9.1 billion, the CO2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO2-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.
Scope for improved eco-efficiency varies among diverse cropping systems
Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.
Integrated crop water management might sustainably halve the global food gap
As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an 'ambitious' scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.
Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure
Understanding the impact of changes in the crop canopy on yield is important in order to meet future food demands. We designed a field experiment to investigate the relationships between crop‐related factors and yield gaps in maize to enhance crop yields from 2010 to 2018 in Qitai, China. Maize grain yields (n = 247) were divided into four yield ranges: <15 Mg ha−1 (n = 30), 15–18 Mg ha−1 (n = 79), 18–21 Mg ha−1 (n = 114), and >21 Mg ha−1 (n = 24). The characteristics of the maize canopy structure as well as the light interception, photosynthetic potential, and radiation utilization efficiency in these four yield ranges were analyzed. The canopy structure of treated fields with yields >21 Mg ha−1 had a higher leaf area index (7.2), lower ear ratio (0.39), longer internodes above the ear (20.1 cm), larger leaf orientation value (LOV) above the ear (48.6), smaller leaf angle above the ear (18°), and smaller LOV below the ear (36.0) when compared to the other treatments. These findings suggested that the yield gap is dependent on canopy structure, and the evolutionary trend also accounted for significant increases in post‐LAD (p < 0.01), changes in crop growth rate (CGR; p < 0.01), net assimilation rate (NAR; p < 0.05), and radiation utilization efficiency. The radiation utilization efficiencies in the 15–18, 18–21, and >21 Mg ha−1 treatments (1.23, 1.28, and 1.38 g MJ−1, respectively) were higher than for the <15 Mg ha−1 treatment (1.10 g MJ−1). Furthermore, there are opportunities to narrow the yield gaps by optimizing the canopy structure to make full use of the solar radiation resources. Our results will help breeders choose an ideal canopy structure to improve yield. In addition, our results may serve as a general guide for other maize growing regions. This study applied to explain canopy‐related factors influencing maize yield gaps, in order to enhance yields. There are opportunities to narrow the yield gaps by making full use of radiation resources by optimizing the canopy structure. Our results could help breeders choose an ideal canopy structure for improving yield.
The Pitfalls of Relating Weeds, Herbicide Use, and Crop Yield: Don't Fall Into the Trap! A Critical Review
The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.