Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,939 result(s) for "crude fiber"
Sort by:
Genetic Diversity, Analysis of Some Agro-Morphological and Quality Traits and Utilization of Plant Resources of Alfalfa
Alfalfa (Medicago sativa L.) is one of the most important perennial forage crops to build effective diets for livestock producers. Forage crop improvement depends largely on the availability of diverse germplasms and their efficient utilization. The present investigation was conducted at Ismailia Agricultural Research Station to assess twenty-one alfalfa genotypes for yield components, forage yield and quality traits during 2019/2020 and 2020/2021. The genotypes were evaluated in field experiments with three replicates and a randomized complete block design, using analysis of variance, estimate of genetic variability, estimate of broad sense heritability (hb2) and cluster analysis to identify the inter relationships among the studied genotypes as well as principal component analysis (PCA) to explain the majority of the total variation. Significant differences were found among genotypes for all studied traits. The general mean of the studied traits was higher in the second year than the first year. Moreover, the combined analysis showed highly significant differences between the two years, genotypes and the year × gen. interaction for the traits studied. The genotype F18 recorded the highest values for plant height, number of tiller/m2, total fresh yield and total dry yield, while, the genotype F49 ranked first for leaf/stem ratio. The results showed highly significant variation among the studied genotypes for crude protein %, crude fiber % and ash %. Data revealed that the genotypes P13 and P5 showed the highest values for crude protein %, whereas, the genotype F18 recorded the highest values for crude fiber % and ash content. The results revealed high estimates of genotypic coefficient and phenotypic coefficient of variation (GCV% and PCV%) with high hb2, indicating the presence of genetic variability and effective potential selection for these traits. The cluster analysis exhibited considerable genetic diversity among the genotypes, which classified the twenty one genotypes of alfalfa into five sub-clusters. The genotypes F18, F49, K75, S35, P20, P5 and P13 recorded the highest values for all studied traits compared with other clusters. Furthermore, the PC analysis grouped the studied genotypes into groups and remained scattered in all four quadrants based on all studied traits. Ultimately, superior genotypes were identified can be utilized for crop improvement in future breeding schemes.
Effects of the Addition of Crude Fibre Concentrate on Performance, Welfare and Selected Caecal Bacteria of Broilers
The study evaluated the effects of crude fibre concentrate supplementation on final body weight, mortality, feed conversion ratio, European Production Efficiency Factor, European Broiler Index, welfare parameters, colony-forming units of selected caecal bacteria (Enterobacteriaceae and lactic acid bacteria) and pH of broiler faeces and litter. The study comprised 990 Ross 308 male chicks divided into three groups, a control and two experimental groups, which were given crude fibre concentrate as a feed supplement. On the thirty-fifth day of rearing, the birds’ welfare scores were evaluated, and 2 g of cecum was collected post-mortem from six chickens in each group. Subsequently, a series of ten-fold dilutions of the material was prepared, followed by cultures and measurement of pH in the faeces and litter. The inclusion of crude fibre concentrate resulted in a beneficial impact on the ultimate body mass (p ≤ 0.001), welfare standard (p ≤ 0.001), and quantity of colony-forming units of lactic acid bacteria (p ≤ 0.05) within the cecum. Furthermore, it had a positive influence on lowering the pH levels of both faeces and litter (p ≤ 0.05).
Influence on tail-biting in weaning pigs of crude fibre content and different crude fibre components in pigs' rations
The aim of the study was to analyse the influence on tail-biting in undocked pigs during the rearing period of crude fibre in piglets' rations. All pigs were fed the same pre-starter until weaning. The study comprised two trials with four experimental groups each. The first trial contained: a control group (CG1) with conventional feed (up to 40 g/kg crude fibre), two groups with an increased crude fibre content of up to 50 g/kg (G5) and 60 g/kg (G6), respectively, and one group with conventional feed and crude fibre provision ad libitum (AL). The second trial consisted of a control group (CG2) which received the same conventional feed as CG1 and three treatment groups with either soya hulls (SS), dried sugar beet pulp (DP) or oat fibre (OF) admixed to their ration, to achieve a crude fibre content of 60 g/kg in all three groups. The rearing week, the batch, the treatment group (only in trial one) and the interaction between batch and treatment group had a significant influence on tail-lesions (P < 0.05). The tail-biting process started in rearing week 3 (trial one) and 5 (trial two), respectively. Due to the low frequency of tail-biting during the present study, crude fibre seems to have no major influence on tail-biting during the rearing period. This unexpected result may be caused by the optimized conditions in which the piglets were kept and the intensive animal observation carried out by the employees. However, the batch effect was most influential.
Digestive Tract Morphology and Gut Microbiota Jointly Determine an Efficient Digestive Strategy in Subterranean Rodents: Plateau Zokor
Rodents’ lifestyles vary in different environments, and to adapt to various lifestyles specific digestion strategies have been developed. Among these strategies, the morphology of the digestive tracts and the gut microbiota are considered to play the most important roles in such adaptations. However, how subterranean rodents adapt to extreme environments through regulating gut microbial diversity and morphology of the digestive tract has yet to be fully studied. Here, we conducted the comparisons of the gastrointestinal morphology, food intake, food assimilation, food digestibility and gut microbiota of plateau zokor Eospalax baileyi in Qinghai-Tibet Plateau and laboratory rats Rattus norvegicus to further understand the survival strategy in a typical subterranean rodent species endemic to the Qinghai-Tibet Plateau. Our results revealed that plateau zokor evolved an efficient foraging strategy with low food intake, high food digestibility, and ultimately achieved a similar amount of food assimilation to laboratory rats. The length and weight of the digestive tract of the plateau zokor was significantly higher than the laboratory rat. Particularly, the weight and length of the large intestine and cecum in plateau zokor is three times greater than that of the laboratory rat. Microbiome analysis showed that genus (i.e., Prevotella, Oscillospira, CF231, Ruminococcus and Bacteroides), which are usually associated with cellulose degradation, were significantly enriched in laboratory rats, compared to plateau zokor. However, prediction of metagenomic function revealed that both plateau zokor and laboratory rats shared the same functions in carbohydrate metabolism and energy metabolism. The higher digestibility of crude fiber in plateau zokor was mainly driven by the sizes of cecum and cecum tract, as well as those gut microbiota which associated with cellulose degradation. Altogether, our results highlight that both gut microbiota and the morphology of the digestive tract are vital to the digestion in wild rodents.
Effects of a dietary crude fibre concentrate on growth in weaned piglets
Many fibre sources can help the adaptation of piglets at weaning, improving the growth. In this study, the effects of a dietary crude fibre concentrate (CFC) on piglet’s growth was investigated. From 31 to 51 days of age, 108 weaned piglets (D×(Lw×L)), had access to two isofibrous, isoenergetic and isonitrogenous diets, supplemented with 1% of CFC (CFC group) or not (control (CON) group). From days 52 to 64 all piglets received the same starter diet. During the dietary treatment period the CFC group showed higher average daily gain, average daily feed intake and feed efficiency (P<0.001) than CON group. At 64 days of age, BW was higher in CFC group compared with CON group (P<0.001). Blood samples were collected at days 31, 38, 45 and 52 of age. From days 31 to 52 significant differences in the somatotropic axis between groups were observed. In particular, growth hormone levels were higher only at the end of the 1st week of dietary treatment (P<0.05) in CFC group animals compared with CON group animals. The IGF-I trend was similar between groups even if the IGF-I levels were higher in the CFC group than CON group 1 week after starting treatment (P<0.01). The IGF-binding protein 3 (IGFBP-3) levels were higher in the first 2 weeks of dietary treatment and lower in the 3rd week in CON group compared with CFC group (P<0.01). Specifically, the IGFBP-3 profile was consistent with that of IGF-I in CFC group but not in CON group. At the same time, an increase of leptin in CFC compared with CON group was observed (P<0.05). Piglets fed the CFC diet showed a lower diarrhoea incidence (P<0.05) and a lower number of antibiotic interventions (P<0.05) than CON diet from 31 to 51 days of age. Pig-major acute-phase protein plasma level (P<0.01) and interleukin-6 gene expression (P<0.05) were higher in CON group than CFC group at the end of 1st week of dietary treatment. In conclusion, this study showed that CFC diet influences the hormones related to energy balance enhancing the welfare and growth of piglets. Furthermore, the increase in feed intake during 3 weeks of dietary treatment improved the feed efficiency over the entire post-weaning period.
Anti-Nutritional Components, Fibre, Sinapine and Glucosinolate Content, in Australian Canola (Brassica napus L.) Meal
Canola meal is highly regarded as a component of animal feed with a high protein content and a desirable amino acid profile. The presence of some components, in particular glucosinolates, sinapine and fibre, affects the value of the meal and reduces the amount that can be used in animal feed formulations. Glucosinolates in traditional cultivars (rapeseed) had very high amounts and this severely limited the usefulness of the meal. Canola breeding programs have successfully reduced glucosinolate content to trace amounts. However sinapine remains at levels sufficiently high to cause problems, particularly in poultry feed. The relatively high fibre level in canola also reduces the value of the product for animal feed. This study has determined the level of sinapine, glucosinolates and fibre in current cultivars of canola in Australia to illustrate advances made by breeding programs and limitations which still remain to raise the usefulness of a potentially valuable feedstock. Although glucosinolate levels in meal were shown to have been reduced to 11 μmol/g in some cases, sinapine remained at traditional levels of about 12-15 g/kg and neutral detergent fibre levels were about 30-40%. These issues are important priorities for canola breeders.
Biofertilizers Enhance Quality of Onion
This investigation was conducted to determine the effect of organic fertilizers on the content of chlorophyll a, chlorophyll b, antioxidant activity, crude fibre, and zinc in two onion cultivars, Stuttgarter Riesen and Rote Laaer, during 2016, 2017, and 2018. In this research, the following treatments were used: B-Stimul (contains Azospirillum Tarrand et al., Azotobacter Beij., Bacillus Cohn, Chlorella vulgaris Beij., and Herbaspirillum Baldani et al.), EkoBooster 2 (contains biostimulators and mineral salts of nitrogen, phosphorus, and potassium) and Vermifit A (extract of compost of Californian earthworm). The results showed that the application of biofertilizers to onion resulted in the highest chlorophyll b content in 2017 in Stuttgarter Riesen. EkoBooster 2 positively affected crude fibre content in both cultivars, but only in 2016. Antioxidant activity was not significantly affected by the interaction of experimental factors. The application of the biostimulating fertilizers can have a positive impact on the quality parameters of onion, but the kind of fertilizer must be suited to seasonal conditions and the cultivar.
Determination of Biological and Sensory Profiles of Biscuits Enriched with Tea (Camellia sinensis L.) Powder
The aim of this work was to characterise the biological and sensory profile of biscuits enriched with green (1 and 3%) and black tea (1 and 3%) powders. Biscuits without the addition of tea were used as a control. Phenolic concentration, flavonoid concentration, and antioxidant activity were determined spectrophotometrically. Amino acid composition was determined using automatic amino acid analyser AAA 400 and crude fibre content using an Ancom analyser. Sensory profiles were evaluated by comparison of enriched and control biscuit samples. The enriched biscuits showed higher phenolic and flavonoid concentration and antioxidant activity estimated by DPPH and phospholybdenum method in comparison with levels in the control group. The best results for antioxidant activity estimated by DPPH and phosphomolybdenum methods were achieved in biscuits enriched with black tea powder (3%): 2.25 and of 32.64 mg TEAC·g , respectively. Total phenolic concentration was 1.16 mg GAE·g , and total flavonoid concentration was 0.13 mg QE·g . These biscuits had higher concentration of crude fibre in comparison with the control group and the highest concentration (0.64%) was found in biscuits with addition of 3% green tea powder. The amino acid composition in samples, including in the control sample was balanced, with slightly higher concentration of threonine, serine, and methionine in enriched samples, but this parameter was not statistically significant. Biscuits enriched with green and black tea had higher sensory scores for taste, smell and aftertaste.
Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains
The chemical composition of 4 spring wheat species was analyzed: einkorn (Triticum monococcum) (local cv.), emmer (Triticum dicoccon) (Lamella cv.), spelt (Triticum spelta) (Wirtas cv.), and common wheat (Triticum aestivum) (Rospuda cv.). Mean emmer and einkorn yield was significantly lower than that of common wheat. The analyses of the wheat grain included the content of total protein, crude ash, crude fat, crude fibre, carbohydrates, phosphorus, potassium, magnesium, calcium, copper, iron, manganese, and zinc. The grains of the tested ancient wheats were richer in protein, lipids, crude fibre, and crude ash than the common wheat grains. The significantly highest levels of crude protein, ether extract, and crude ash were found in einkorn. As the protein concentration in the grain increased, the calcium, magnesium, and potassium levels increased, and the zinc and manganese levels decreased. Genotypic differences between the studied wheats were reflected in the concentrations of the minerals and nutrients, an observation which can be useful in further cross-linkage studies. Dough made from common wheat and spelt flour showed better performance quality classifying it to be used for bread production. In turn, flour from emmer and einkorn wheat may be intended for pastry products, due to short dough development time and constancy as well as high softening.
Dietary Fiber Level Improve Growth Performance, Nutrient Digestibility, Immune and Intestinal Morphology of Broilers from Day 22 to 42
There are few systematic studies on the dietary fiber requirements of broilers in the late feeding stage, and there are not enough data to support this hypothesis. This experiment was conducted to examine the effects of dietary fiber level on growth performance, nutrient digestibility, immune function and intestinal morphology of broilers from day 22 to 42. A total of 480 one-day-old Arbor Acres broilers with half male and half female were randomly allocated into four groups, with eight replicates in each group and fifteen chickens in each replicate. The experimental period was 42 days. All broilers were fed a basal diet from 1 to 21 days. During the 22–42 day period, the four experimental groups were fed diets with soybean hulls as the fiber source, and crude fiber (CF) levels were 2%, 5%, 8% and 11%, respectively. The results showed that during the 29–42 day period, the average daily feed intake (ADFI) of broilers was higher in the 5% CF and 8% CF groups (p < 0.05), and during the 29–35 day period, the average daily gain (ADG) of broilers was higher and the ratio of feed and gain (F/G) of broilers was lower in the 5% CF and 8% CF groups (p < 0.05). The digestibility of crude protein (CP), ether extract (EE), CF, acid detergent fiber (ADF) and neutral detergent fiber (NDF) was higher in broilers of the 8% CF group (p < 0.05). The immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) content of the plasma of broilers was higher in the 8% CF group (p < 0.05). The villus height (VH) of the duodenum, jejunum and ileum of broilers was higher, and the crypt depth (CD) was lower in the 8% CF group than that in the 2% CF group (p < 0.05). The ratio of VH and CD (V/C) of the duodenum and jejunum of broilers in the 8% CF group was higher than that in the 2% CF group (p < 0.05). The quadratic regression analysis showed that the optimum dietary CF level was 7–9%. In conclusion, under the conditions of this experiment, a diet of 7–9% CF may promote growth performance by improving the nutrient digestibility, immunity and intestinal morphology of broilers from day 22 to 42.