Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
904
result(s) for
"cryoprotectants"
Sort by:
Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?
by
Rogulska, Olena
,
Kerby, Julie
,
Mericka, Pavel
in
cell therapy
,
cell therapy safety
,
cryobiology
2020
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Journal Article
Cryopreservation: An Overview of Principles and Cell-Specific Considerations
2021
The origins of low-temperature tissue storage research date back to the late 1800s. Over half a century later, osmotic stress was revealed to be a main contributor to cell death during cryopreservation. Consequently, the addition of cryoprotective agents (CPAs) such as dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), or propylene glycol (PG), although toxic to cells at high concentrations, was identified as a necessary step to protect against rampant cell death during cryopreservation. In addition to osmotic stress, cooling and thawing rates were also shown to have significant influence on cell survival during low temperature storage. In general, successful low-temperature cell preservation consists of the addition of a CPA (commonly 10% DMSO), alone or in combination with additional permeating or non-permeating agents, cooling rates of approximately 1ºC/min, and storage in either liquid or vapor phase nitrogen. In addition to general considerations, cell-specific recommendations for hepatocytes, pancreatic islets, sperm, oocytes, and stem cells should be observed to maximize yields. For example, rapid cooling is associated with better cryopreservation outcomes for oocytes, pancreatic islets, and embryonic stem cells while slow cooling is recommended for cryopreservation of hepatocytes, hematopoietic stem cells, and mesenchymal stem cells. Yields can be further maximized by implementing additional pre-cryo steps such as: pre-incubation with glucose and anti-oxidants, alginate encapsulation, and selecting cells within an optimal age range and functional ability. Finally, viability and functional assays are critical steps in determining the quality of the cells post-thaw and improving the efficiency of the current cryopreservation methods.
Journal Article
Cryopreservation of Testicular Tissue from Adult Red-Rumped Agoutis (Dasyprocta leporina Linnaeus, 1758)
by
Alexandre R. Silva
,
Luana G. P. Bezerra
,
Ana G. Pereira
in
adults
,
biobanking
,
biobanking; testicular tissue; wild rodents; vitrification; permeating cryoprotectants
2022
This study measured the effects of different freezing techniques and permeating cryoprotectants on the preservation of testicular tissues from adult red-rumped agoutis. Tissue biopsies (3.0 mm3) from five individuals were allocated to different experimental groups: control (non-cryopreserved); slow freezing (SF), solid-surface vitrification (SSV), and conventional vitrification (CV). Each method used dimethyl sulfoxide (DMSO), ethylene glycol (EG), or a DMSO + EG combination. Morphology, viability, mitochondrial activity, and proliferative potential were assessed in fresh and frozen tissue samples. Testicular morphology was better using SSV with a combination of DMSO and EG. Across the different cryopreservation approaches, as well as cryoprotectant combinations, cell viability was comparable. Regarding mitochondrial activity, DMSO + EG/SSV or CV, and DMSO + EG/CV were similar to the EG/SF group, which was the best group that provided values similar to fresh control groups. Adequate preservation of the proliferative potential of spermatogonia, Leydig cells, and Sertoli cells was obtained using SSV with DMSO + EG. Overall, the use of SSV with DMSO + EG was the best protocol for the preservation of testicular tissues from adult red-rumped agoutis.
Journal Article
Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing
2019
Cryopreservation is widely used to maintain backups of cells as it enables the semipermanent storage of cells. During the freezing process, ice crystals that are generated inside and outside the cells can lethally damage the cells. All conventional cryopreservation methods use at least one cryoprotective agent (CPA) to render water inside and outside the cells vitreous or nanocrystallized (near-vitrification) without forming damaging ice crystals. However, CPAs should ideally be avoided due to their cytotoxicity and potential side effects on the cellular state. Herein, we demonstrate the CPA-free cryopreservation of mammalian cells by ultrarapid cooling using inkjet cell printing, which we named superflash freezing (SFF). The SFF cooling rate, which was estimated by a heat-transfer stimulation, is sufficient to nearly vitrify the cells. The experimental results of Raman spectroscopy measurements, and observations with an ultrahigh-speed video camera support the near-vitrification of the droplets under these conditions. Initially, the practical utility of SFF was demonstrated on mouse fibroblast 3T3 cells, and the results were comparable to conventional CPA-assisted methods. Then, the general viability of this method was confirmed on mouse myoblast C2C12 cells and rat primary mesenchymal stem cells. In their entirety, the thus-obtained results unequivocally demonstrate that CPA-free cell cryopreservation is possible by SFF. Such a CPA-free cryopreservation method should be ideally suited for most cells and circumvent the problems typically associated with the addition of CPAs.
Journal Article
The Role of Cryoprotective Agents in Liposome Stabilization and Preservation
2022
To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.
Journal Article
Multi-omics Investigation of Freeze Tolerance in the Amur Sleeper, an Aquatic Ectothermic Vertebrate
by
Sun, Ning
,
He, Shunping
,
Yang, Liandong
in
Acclimatization - genetics
,
Adaptation, Physiological - physiology
,
Amino acid sequence
2023
Abstract
Freeze tolerance, the ability of an organism to survive internal ice formation, is a striking survival strategy employed by some ectotherms living in cold environments. However, the genetic bases of this remarkable adaptation are largely unknown. The Amur sleeper (Perccottus glenii), the only known freeze-tolerant fish species, can overwinter with its entire body frozen in ice. Here, we sequenced the chromosome-level genome of the Amur sleeper and performed comparative genomic, transcriptomic, and metabolomic analyses to investigate its strategies for surviving freezing. Evolutionary analysis suggested that the Amur sleeper diverged from its closest non-cold-hardy relative about 15.07 million years ago and has experienced a high rate of protein evolution. Transcriptomic and metabolomic data identified a coordinated and tissue-specific regulation of genes and metabolites involved in hypometabolism, cellular stress response, and cryoprotectant accumulation involved in freezing and thawing. Several genes show evidence of accelerated protein sequence evolution or family size expansion were found as adaptive responses to freezing-induced stresses. Specifically, genetic changes associated with cytoskeleton stability, cryoprotectant synthesis, transmembrane transport, and neuroprotective adaptations were identified as potentially key innovations that aid in freezing survival. Our work provides valuable resources and opportunities to unveil the molecular adaptations supporting freeze tolerance in ectothermic vertebrates.
Journal Article
Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools
2019
Cold-adapted microorganisms inhabiting permanently low-temperature environments were initially just a biological curiosity but have emerged as rich sources of numerous valuable tools for application in a broad spectrum of innovative technologies. To overcome the multiple challenges inherent to life in their cold habitats, these microorganisms have developed a diverse array of highly sophisticated synergistic adaptations at all levels within their cells: from cell envelope and enzyme adaptation, to cryoprotectant and chaperone production, and novel metabolic capabilities. Basic research has provided valuable insights into how these microorganisms can thrive in their challenging habitat conditions and into the mechanisms of action of the various adaptive features employed, and such insights have served as a foundation for the knowledge-based development of numerous novel biotechnological tools. In this review, we describe the current knowledge of the adaptation strategies of cold-adapted microorganisms and the biotechnological perspectives and commercial tools emerging from this knowledge. Adaptive features and, where possible, applications, in relation to membrane fatty acids, membrane pigments, the cell wall peptidoglycan layer, the lipopolysaccharide component of the outer cell membrane, compatible solutes, antifreeze and ice-nucleating proteins, extracellular polymeric substances, biosurfactants, chaperones, storage materials such as polyhydroxyalkanoates and cyanophycins and metabolic adjustments are presented and discussed.
Journal Article
Erratum: Incorporating cryopreservation evaluations into the design of cell-based drug delivery dystems: An opinion paper
2022
[This corrects the article DOI: 10.3389/fimmu.2022.967731.].[This corrects the article DOI: 10.3389/fimmu.2022.967731.].
Journal Article
Vitrification Solutions for Plant Cryopreservation: Modification and Properties
by
Faltus, Milos
,
Bilavcik, Alois
,
Zamecnik, Jiri
in
Cryopreservation
,
cryoprotectant
,
Cryoprotectants
2021
Many plants cannot vitrify themselves because they lack glassy state-inducing substances and/or have high water content. Therefore, cryoprotectants are used to induce vitrification. A cryoprotectant must have at least the following primary abilities: high glass-forming property, dehydration strength on a colligative basis to dehydrate plant cells to induce the vitrification state, and must not be toxic for plants. This review introduces the compounds used for vitrification solutions (VSs), their properties indicating a modification of different plant vitrification solutions, their modifications in the compounds, and/or their concentration. An experimental comparison is listed based on the survival or regeneration rate of one particular species after using more than three different VSs or their modifications. A brief overview of various cryopreservation methods using the Plant Vitrification Solution (PVS) is also included. This review can help in alert researchers to newly introduced PVSs for plant vitrification cryoprotocols, their properties, and the choice of their modifications in the compounds and/or their concentration.
Journal Article
Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D
2019
Despite the wide applications, systematic mechanobiological investigation of 3D porous scaffolds has yet to be performed due to the lack of methodologies for decoupling the complex interplay between structural and mechanical properties. Here, we discover the regulatory effect of cryoprotectants on ice crystal growth and use this property to realize separate control of the scaffold pore size and stiffness. Fibroblasts and macrophages are sensitive to both structural and mechanical properties of the gelatin scaffolds, particularly to pore sizes. Interestingly, macrophages within smaller and softer pores exhibit pro-inflammatory phenotype, whereas anti-inflammatory phenotype is induced by larger and stiffer pores. The structure-regulated cellular mechano-responsiveness is attributed to the physical confinement caused by pores or osmotic pressure. Finally, in vivo stimulation of endogenous fibroblasts and macrophages by implanted scaffolds produce mechano-responses similar to the corresponding cells in vitro, indicating that the physical properties of scaffolds can be leveraged to modulate tissue regeneration.
Cellular responses to mechanical stimulation have emerged as an important area of research. Here, the authors use cryoprotectant to control the pore size and mechanical properties of porous scaffolds without changing the scaffold composition to allow for the study of cellular mechano-responsiveness in 3D.
Journal Article