Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15,161
result(s) for
"cytochrome P-450"
Sort by:
Heterologous expression of high-activity cytochrome P450 in mammalian cells
2020
The evaluation of Cytochrome P450 (CYP) enzymatic activity is essential to estimate drug pharmacokinetics. Numerous CYP allelic variants have been identified; the functional characterisation of these variants is required for their application in precision medicine. Results from heterologous expression systems using mammalian cells can be integrated in in vivo studies; however, other systems such as
E. coli
, bacteria, yeast, and baculoviruses are generally used owing to the difficulty in expressing high CYP levels in mammalian cells. Here, by optimising transfection and supplementing conditions, we developed a heterologous expression system using 293FT cells to evaluate the enzymatic activities of three CYP isoforms (CYP1A2, CYP2C9, and CYP3A4). Moreover, we established co-expression with cytochrome P450 oxidoreductase and cytochrome b
5
. This expression system would be a potential complementary or beneficial alternative approach for the pharmacokinetic evaluation of clinically used and developing drugs in vitro.
Journal Article
Differences in the Epigenetic Regulation of Cytochrome P450 Genes between Human Embryonic Stem Cell-Derived Hepatocytes and Primary Hepatocytes
2015
Human pluripotent stem cell-derived hepatocytes have the potential to provide in vitro model systems for drug discovery and hepatotoxicity testing. However, these cells are currently unsuitable for drug toxicity and efficacy testing because of their limited expression of genes encoding drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes. Transcript levels of major CYP genes were much lower in human embryonic stem cell-derived hepatocytes (hESC-Hep) than in human primary hepatocytes (hPH). To verify the mechanism underlying this reduced expression of CYP genes, including CYP1A1, CYP1A2, CYP1B1, CYP2D6, and CYP2E1, we investigated their epigenetic regulation in terms of DNA methylation and histone modifications in hESC-Hep and hPH. CpG islands of CYP genes were hypermethylated in hESC-Hep, whereas they had an open chromatin structure, as represented by hypomethylation of CpG sites and permissive histone modifications, in hPH. Inhibition of DNA methyltransferases (DNMTs) during hepatic maturation induced demethylation of the CpG sites of CYP1A1 and CYP1A2, leading to the up-regulation of their transcription. Combinatorial inhibition of DNMTs and histone deacetylases (HDACs) increased the transcript levels of CYP1A1, CYP1A2, CYP1B1, and CYP2D6. Our findings suggest that limited expression of CYP genes in hESC-Hep is modulated by epigenetic regulatory factors such as DNMTs and HDACs.
Journal Article
Impact of CYP1A2, CYP2C19, and CYP2D6 genotype- and phenoconversion-predicted enzyme activity on clozapine exposure and symptom severity
by
Bousman, Chad A
,
Lesche Dorothea
,
Pantelis Christos
in
Antipsychotics
,
Clozapine
,
CYP1A2 protein
2020
Clozapine is an atypical antipsychotic metabolized by CYP1A2, CYP2D6, and CYP2C19 enzymes. Among 66 adult schizophrenia patients treated with clozapine-based combination therapies, we explored the impact of genotype-predicted CYP1A2, CYP2D6, and CYP2C19 activity on dose-adjusted clozapine concentrations and symptom severity, with and without correction for inhibitors and inducers of these enzymes. Uncorrected activity scores were not associated with dose-adjusted clozapine concentrations or symptom severity. CYP1A2 and CYP2D6 activity scores corrected for known inducers (i.e., smoking) and inhibitors (e.g., concomitant medications) were associated with dose-adjusted clozapine levels and in the case of CYP1A2, symptom severity. However, smoking status and certain inhibitors of clozapine metabolism (i.e., esomeprazole) explained significantly more variance in dose-adjusted clozapine levels relative to corrected activity scores. These findings highlight the clinical importance of nongenetic factors (smoking, concomitant medications) and suggest that the added utility of CYP1A2, CYP2D6, and CYP2C19 activity scores to guide clozapine dosing is currently limited.
Journal Article
Bioluminescence Measurement of Time-Dependent Dynamic Changes of CYP-Mediated Cytotoxicity in CYP-Expressing Luminescent HepG2 Cells
by
Oshimura, Mitsuo
,
Abe, Satoshi
,
Iwado, Satoru
in
Aflatoxin B1 - toxicity
,
Animals
,
Antibiotics
2021
We sought to develop a cell-based cytotoxicity assay using human hepatocytes, which reflect the effects of drug-metabolizing enzymes on cytotoxicity. In this study, we generated luminescent human hepatoblastoma HepG2 cells using the mouse artificial chromosome vector, in which click beetle luciferase alone or luciferase and major drug-metabolizing enzymes (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) are expressed, and monitored the time-dependent changes of CYP-mediated cytotoxicity expression by bioluminescence measurement. Real-time bioluminescence measurement revealed that compared with CYP-non-expressing cells, the luminescence intensity of CYP-expressing cells rapidly decreased when the cells were treated with low concentrations of aflatoxin B1 or primaquine, which exhibits cytotoxicity in the presence of CYP3A4 or CYP2D6, respectively. Using kinetics data obtained by the real-time bioluminescence measurement, we estimated the time-dependent changes of 50% inhibitory concentration (IC50) values in the aflatoxin B1- and primaquine-treated cell lines. The first IC50 value was detected much earlier and at a lower concentration in primaquine-treated CYP-expressing HepG2 cells than in primaquine-treated CYP-non-expressing cells, and the decrease of IC50 values was much faster in the former than the latter. Thus, we successfully monitored time- and concentration-dependent dynamic changes of CYP-mediated cytotoxicity expression in CYP-expressing luminescent HepG2 cells by means of real-time bioluminescence measurement.
Journal Article
Pogostone inhibits the activity of CYP3A4, 2C9, and 2E1 in vitro
2021
Pogostone possesses various pharmacological activities, which makes it widely used in the clinic. Its effect on the activity of cytochrome P450 enzymes (CYP450s) could guide its clinical combination.
To investigate the effect of pogostone on the activity of human CYP450s.
The effect of pogostone on the activity of CYP450s was evaluated in human liver microsomes (HLMs) compared with blank HLMs (negative control) and specific inhibitors (positive control). The corresponding parameters were obtained with 0-100 μM pogostone and various concentrations of substrates.
Pogostone was found to inhibit the activity of CYP3A4, 2C9, and 2E1 with the IC
50
values of 11.41, 12.11, and 14.90 μM, respectively. The inhibition of CYP3A4 by pogostone was revealed to be performed in a non-competitive and time-dependent manner with the K
i
value of 5.69 μM and the KI/K
inact
value of 5.86/0.056/(μM/min). For the inhibition of CYP2C9 and 2E1, pogostone acted as a competitive inhibitor with the K
i
value of 6.46 and 7.67 μM and was not affected by the incubation time.
The inhibitory effect of pogostone on the activity of CYP3A4, 2C9, and 2E1 has been disclosed in this study, implying the potential risk during the co-administration of pogostone and drugs metabolized by these CYP450s. The study design provides a reference for further in vivo investigations to validate the potential interaction.
Journal Article
Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke
by
Ibrahim, Shebl
,
Ansari, Mohammed G.
,
Hussain, Tajamul
in
Animal tissues
,
Animals
,
Biochemistry
2014
Incense smoke is increasingly being recognized as a potential environmental contaminant and is linked to malignant and non-malignant respiratory diseases. The detoxification of environmental contaminants including polycyclic aromatic hydrocarbons (PAHs) involves the induction of cytochrome P-450 family enzymes (CYPs) by PAHs. However, the detoxification of PAHs also results in the generation of reactive and unstable intermediary metabolites which are implicated in the oxidative stress, DNA damage, and inflammation. It is unclear whether CYPs are similarly induced by incense smoke, which incidentally contains substantial amounts of PAHs. Here, we examined the impact of long-term incense smoke exposure on the induction of CYPs in male Wister Albino rats. Incense smoke exposure significantly induced the expression of CYP1A1, CYP1A2, and CYP1B1 mRNAs in both lung and liver tissues. The extent of CYP1A1 and CYP1B1 induction was significantly higher in the liver compared to that in the lung, while that of CYP1A2 was greater in the lung than in liver. Incense smoke exposure also increased malondialdehyde and reduced glutathione levels in lung and liver tissues, and the catalase activity in the liver tissues to significant levels. Furthermore incense smoke exposure led to a marked increase in TNF-α and IL-4 levels. The data demonstrate for the first time the capacity of incense smoke to induce CYP1 family enzymes in the target and non-target tissues. Induction of CYPs increased oxidative stress and inflammation appear to be intimately linked to promote the carcinogenesis and health complications in people chronically exposed to incense smoke.
Journal Article
Liver Cirrhosis Affects the Pharmacokinetics of the Six Substrates of the Basel Phenotyping Cocktail Differently
by
Bachmann, Fabio
,
Suenderhauf, Claudia
,
Hruz, Petr
in
Antiretroviral drugs
,
Bioavailability
,
Caffeine
2022
Activities of hepatic cytochrome P450 enzymes (CYPs) are relevant for hepatic clearance of drugs and known to be decreased in patients with liver cirrhosis. Several studies have reported the effect of liver cirrhosis on CYP activity, but the results are partially conflicting and for some CYPs lacking.
In this study, we aimed to investigate the CYP activity in patients with liver cirrhosis with different Child stages (A-C) using the Basel phenotyping cocktail approach.
We assessed the pharmacokinetics of the six compounds and their CYP-specific metabolites of the Basel phenotyping cocktail (CYP1A2: caffeine, CYP2B6: efavirenz, CYP2C9: flurbiprofen, CYP2C19: omeprazole, CYP2D6: metoprolol, CYP3A: midazolam) in patients with liver cirrhosis (n = 16 Child A cirrhosis, n = 15 Child B cirrhosis, n = 5 Child C cirrhosis) and matched control subjects (n = 12).
While liver cirrhosis only marginally affected the pharmacokinetics of the low to moderate extraction drugs efavirenz and flurbiprofen, the elimination rate of caffeine was reduced by 51% in patients with Child C cirrhosis. For the moderate to high extraction drugs omeprazole, metoprolol, and midazolam, liver cirrhosis decreased the elimination rate by 75%, 37%, and 60%, respectively, increased exposure, and decreased the apparent systemic clearance (clearance/bioavailability). In patients with Child C cirrhosis, the metabolic ratio (ratio of the area under the plasma concentration-time curve from 0 to 24 h of the metabolite to the parent compound), a marker for CYP activity, decreased by 66%, 47%, 92%, 73%, and 43% for paraxanthine/caffeine (CYP1A2), 8-hydroxyefavirenz/efavirenz (CYP2B6), 5-hydroxyomeprazole/omeprazole (CYP2C19), α-hydroxymetoprolol/metoprolol (CYP2D6), and 1'-hydroxymidazolam/midazolam (CYP3A), respectively. In comparison, the metabolic ratio 4-hydroxyflurbiprofen/flurbiprofen (CYP2C9) remained unchanged.
Liver cirrhosis affects the activity of CYP isoforms differently. This variability must be considered for dose adjustment of drugs in patients with liver cirrhosis.
NCT03337945.
Journal Article
Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) and 2,2′,3,4,4′,5′,6-heptachlorobiphenyl (PCB 183)
by
Nagayoshi, Haruna
,
Konishi, Yoshimasa
,
Kajimura, Keiji
in
Aromatase
,
Bioaccumulation
,
Chirality
2018
2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) and 2,2′,3,4,4′,5′,6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.
Journal Article
Understanding a Substrate’s Product Regioselectivity in a Family of Enzymes: A Case Study of Acetaminophen Binding in Cytochrome P450s
by
Yang, Yue
,
Wong, Sergio E.
,
Lightstone, Felice C.
in
Acetaminophen
,
Acetaminophen - chemistry
,
Acetaminophen - metabolism
2014
Product regioselectivity as influenced by molecular recognition is a key aspect of enzyme catalysis. We applied large-scale two-dimensional (2D) umbrella sampling (USP) simulations to characterize acetaminophen (APAP) binding in the active sites of the family of Cytochrome P450 (CYP) enzymes as a case study to show the different regioselectivity exhibited by a single substrate in comparative enzymes. Our results successfully explain the experimentally observed product regioselectivity for all five human CYPs included in this study, demonstrating that binding events play an important role in determining regioselectivity. In CYP2C9 and CYP3A4, weak interactions in an overall large active site cavity result in a fairly small binding free energy difference between APAP reactive binding states, consistent with experimental results that show little preference for resulting metabolites. In contrast, in CYP1A2 and CYP2E1, APAP is strongly restrained by a compact binding pocket, leading to a preferred binding conformation. The calculated binding equilibrium of APAP within the compact active site of CYP2A6 is able to predict the experimentally documented product ratios and is also applied to explain APAP regioselectivity in CYP1A2 and CYP2C9. APAP regioselectivity seems to be related to the selectivity for one binding conformation over another binding conformation as dictated by the size and shape of the active site. Additionally, unlike docking and molecular dynamics (MD), our free energy calculations successfully reproduced a unique APAP pose in CYP3A4 that had been reported experimentally, suggesting this approach is well suited to find the realistic binding pose and the lowest-energy starting structure for studying the chemical reaction step in the future.
Journal Article
Nanostructures of diamond, graphene oxide and graphite inhibit CYP1A2, CYP2D6 and CYP3A4 enzymes and downregulate their genes in liver cells
by
Orlińska, Sylwia
,
Wierzbicki, Mateusz
,
Szczepaniak, Jarosław
in
Carbon
,
carbon nanostructures
,
Cell Survival
2018
Currently, carbon nanostructures are vastly explored materials with potential for future employment in biomedicine. The possibility of employment of diamond nanoparticles (DN), graphene oxide (GO) or graphite nanoparticles (GN) for in vivo applications raises a question of their safety. Even though they do not induce a direct toxic effect, due to their unique properties, they can still interact with molecular pathways. The objective of this study was to assess if DN, GO and GN affect three isoforms of cytochrome P450 (CYP) enzymes, namely, CYP1A2, CYP2D6 and CYP3A4, expressed in the liver.
Dose-dependent effect of the DN, GO and GN nanostructures on the catalytic activity of CYPs was examined using microsome-based model. Cytotoxicity of DN, GO and GN, as well as the influence of the nanostructures on mRNA expression of CYP genes and CYP-associated receptor genes were studied in vitro using HepG2 and HepaRG cell lines.
All three nanostructures interacted with the CYP enzymes and inhibited their catalytic activity in microsomal-based models. CYP gene expression at the mRNA level was also downregulated in HepG2 and HepaRG cell lines. Among the three nanostructures, GO showed the most significant influence on the enzymes, while DN was the most inert.
Our findings revealed that DN, GO and GN might interfere with xenobiotic and drug metabolism in the liver by interactions with CYP isoenzymes responsible for the process. Such results should be considered if DN, GO and GN are used in medical applications.
Journal Article