Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
526,804
result(s) for
"dairy"
Sort by:
At the dairy farm
by
Pendergast, George, author
in
Dairy farming Juvenile literature.
,
Dairy farms Juvenile literature.
,
Dairy farming.
2017
\"Taking care of cows isn't always easy, but the reward is great: milk! Dairy farms are an important food source. This book takes a look at how cows live on dairy farms. From grazing in fields to life in the barn and how they are milked, young readers will love learning about these amazing animals and how they help give us food\"--Provided by publisher.
Clarabelle : making milk and so much more
by
Peterson, Cris, author
in
Dairy cattle Juvenile literature.
,
Dairy farms Wisconsin Juvenile literature.
,
Dairy cattle.
2013
Describes what life is like for dairy cows on a Wisconsin farm, telling how they are milked, what they eat, and what they produce besides milk.
Engineering to support wellbeing of dairy animals
by
Castro-Costa, Andreia
,
Knight, Christopher H.
,
Caja, Gerardo
in
animal health
,
Animal husbandry
,
Animal Husbandry - instrumentation
2016
Current trends in the global milk market and the recent abolition of milk quotas have accelerated the trend of the European dairy industry towards larger farm sizes and higher-yielding animals. Dairy cows remain in focus, but there is a growing interest in other dairy species, whose milk is often directed to traditional and protected designation of origin and gourmet dairy products. The challenge for dairy farms in general is to achieve the best possible standards of animal health and welfare, together with high lactational performance and minimal environmental impact. For larger farms, this may need to be done with a much lower ratio of husbandry staff to animals. Recent engineering advances and the decreasing cost of electronic technologies has allowed the development of ‘sensing solutions’ that automatically collect data, such as physiological parameters, production measures and behavioural traits. Such data can potentially help the decision making process, enabling early detection of health or wellbeing problems in individual animals and hence the application of appropriate corrective husbandry practices. This review focuses on new knowledge and emerging developments in welfare biomarkers (e.g. stress and metabolic diseases), activity-based welfare assessment (e.g. oestrus and lameness detection) and sensors of temperature and pH (e.g. calving alert and rumen function) and their combination and integration into ‘smart’ husbandry support systems that will ensure optimum wellbeing for dairy animals and thereby maximise farm profitability. Use of novel sensors combined with new technologies for information handling and communication are expected to produce dramatic changes in traditional dairy farming systems.
Journal Article
A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa
by
Kangethe, Erastus K.
,
Ochieng, Phillis E.
,
Lindahl, Johanna F.
in
aflatoxin
,
Aflatoxin M1
,
Aflatoxins
2020
Mycotoxins are secondary metabolites of fungi that contaminate food and feed and have a significant negative impact on human and animal health and productivity. The tropical condition in Sub-Saharan Africa (SSA) together with poor storage of feed promotes fungal growth and subsequent mycotoxin production. Aflatoxins (AF) produced by Aspergillus species, fumonisins (FUM), zearalenone (ZEN), T-2 toxin (T-2), and deoxynivalenol (DON) produced by Fusarium species, and ochratoxin A (OTA) produced by Penicillium and Aspergillus species are well-known mycotoxins of agricultural importance. Consumption of feed contaminated with these toxins may cause mycotoxicoses in animals, characterized by a range of clinical signs depending on the toxin, and losses in the animal industry. In SSA, contamination of dairy feed with mycotoxins has been frequently reported, which poses a serious constraint to animal health and productivity, and is also a hazard to human health since some mycotoxins and their metabolites are excreted in milk, especially aflatoxin M1. This review describes the major mycotoxins, their occurrence, and impact in dairy cattle diets in SSA highlighting the problems related to animal health, productivity, and food safety and the up-to-date post-harvest mitigation strategies for the prevention and reduction of contamination of dairy feed.
Journal Article
Milk
by
Squire, Ann, author
in
Dairy products Juvenile literature.
,
Dairy farming Juvenile literature.
,
Milk Juvenile literature.
2017
When most people think of dairy farms, they likely picture green meadows where cows graze between milking sessions. Unfortunately, the vast majority of dairy cows do not lead such peaceful lives. Readers will learn how large commercial dairies do everything they can to produce as much milk as possible. They will also find out how poor farming practices can affect milk quality and harm the environment, as well as how they can choose dairy products responsibly.
The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017
2020
Abstract
The U.S. dairy industry considerably reduced environmental impacts between 1944 and 2007, primarily through improved dairy cow productivity. However, although milk yield per cow has increased over the past decade, whole-system environmental impact analyses have not been conducted over this time period, during which environmental modeling science has improved considerably. The objective of this study was to compare the environmental impact of U.S. dairy cattle production in 2007–2017. A deterministic model based on population demographics, metabolism, and nutrient requirements of dairy cattle was used to estimate resource inputs, nutrient excretion, and greenhouse gas (GHG) emissions per 1.0 × 106 t (one million metric t or MMT) of energy-corrected milk (ECM) produced in 2007 and 2017. System boundaries extended from the manufacture and transport of cropping inputs to milk at the farm gate. Milk transport, processing, and retail were not included. Dairy systems were modeled using typical management practices, herd population dynamics, and production data from U.S. dairy farms. Cropping data were sourced from national databases. The resources required to produce 1.0 MMT ECM in 2017 were considerably reduced relative to those required in 2007, with 2017 production systems using 74.8% of the cattle, 82.7% of the feedstuffs, 79.2% of the land, and 69.5% of the water as compared to 2007. Waste outputs were similarly reduced, with the 2017 U.S. dairy industry producing 79.4%, 82.5%, and 85.7% of the manure, N, and P excretion, respectively. Dairy production in 2017 emitted 80.9% of the CH4 and 81.5% of the N2O per 1.0 MMT ECM compared to 2007. Enteric and manure emissions contributed the major proportion (80%) of GHG emissions per unit of milk, with lesser contributions from cropping (7.6%) and fertilizer application (5.3%). The GHG emissions per 1.0 MMT ECM produced in 2017 were 80.8% of equivalent milk production in 2007. Consequently, although total U.S. ECM production increased by 24.9% between 2007 and 2017, total GHG emissions from this milk production increased by only 1.0%. In line with previous historical analyses, the U.S. dairy industry has made remarkable productivity gains and environmental progress over time. To maintain this culture of continuous improvement, the dairy industry must build on gains made to date and demonstrate its commitment to reducing environmental impacts while improving both economic viability and social acceptability.
Journal Article
Dairy on Myplate
by
Schuh, Mari C., 1975-
in
Dairy products in human nutrition Juvenile literature.
,
Dairy products Juvenile literature.
,
Dairy products in human nutrition.
2013
\"Simple text and photos describe USDA's MyPlate tool and healthy dairy choices for children\"--Provided by publisher.
An empirical analysis of the cost of rearing dairy heifers from birth to first calving and the time taken to repay these costs
2017
Rearing quality dairy heifers is essential to maintain herds by replacing culled cows. Information on the key factors influencing the cost of rearing under different management systems is, however, limited and many farmers are unaware of their true costs. This study determined the cost of rearing heifers from birth to first calving in Great Britain including the cost of mortality, investigated the main factors influencing these costs across differing farming systems and estimated how long it took heifers to repay the cost of rearing on individual farms. Primary data on heifer management from birth to calving was collected through a survey of 101 dairy farms during 2013. Univariate followed by multivariable linear regression was used to analyse the influence of farm factors and key rearing events on costs. An Excel spreadsheet model was developed to determine the time it took for heifers to repay the rearing cost. The mean±SD ages at weaning, conception and calving were 62±13, 509±60 and 784±60 days. The mean total cost of rearing was £1819±387/heifer with a mean daily cost of £2.31±0.41. This included the opportunity cost of the heifer and the mean cost of mortality, which ranged from £103.49 to £146.19/surviving heifer. The multivariable model predicted an increase in mean cost of rearing of £2.87 for each extra day of age at first calving and a decrease in mean cost of £6.06 for each percentile increase in time spent at grass. The model also predicted a decrease in the mean cost of rearing in autumn and spring calving herds of £273.20 and £288.56, respectively, compared with that in all-year-round calving herds. Farms with herd sizes⩾100 had lower mean costs of between £301.75 and £407.83 compared with farms with <100 milking cows. The mean gross margin per heifer was £441.66±304.56 (range £367.63 to £1120.08), with 11 farms experiencing negative gross margins. Most farms repaid the cost of heifer rearing in the first two lactations (range 1 to 6 lactations) with a mean time from first calving until breaking even of 530±293 days. The results of the economic analysis suggest that management decisions on key reproduction events and grazing policy significantly influence the cost of rearing and the time it takes for heifers to start making a profit for the farm.
Journal Article