Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
973 result(s) for "debris mitigation"
Sort by:
A Single-Averaged Model for the Solar Radiation Pressure Applied to Space Debris Mitigation Using a Solar Sail
Several non-functional objects are orbiting around the Earth and they are called space debris. In this work, we investigate the process of space debris mitigation from the GEO region using a solar sail. The acceleration induced by the solar radiation pressure (SRP) is the most relevant perturbation for objects in orbit around the Earth with a high area-to-mass ratio (A/m). We consider the single-averaged SRP model with the Sun in an elliptical and inclined orbit. In addition to the SRP effect, the orbital evolution of space debris is analyzed considering the perturbations due to the Earth’s flattening and third-body perturbations in the dynamical system. The idea is to use the solar sail as a propulsion system using the Sun itself as a clean and abundant energy source so that it can remove space debris from the geostationary orbit and also contribute to the sustainability of space exploration. Using averaged dynamical maps as a tool, the numerical simulations show that the solar sail contributes strongly to exciting the eccentricity of the space debris, causing its reentry into Earth’s atmosphere. To perform the numerical simulations, we consider data from real space debris. We also show that the solar sail can be used to remove space debris for a graveyard orbit. In this way, the solar sail can work as a clean and sustainable space-debris-removal mechanism. Finally, we show that the convenient choice of the argument of perigee and the longitude of the ascending node might contribute to amplify the growth of eccentricity. It is also shown that solar radiation pressure destroys the symmetry of the orbits that can be observed in keplerian orbits, so all the orbits will be asymmetric when considering the presence of this force.
The Legal Framework for Space Debris Remediation as a Tool for Sustainability in Outer Space
The growth of orbital space debris is both a consequence of and a potential hindrance to space activities. The risks posed by space debris propagation in the most used orbital regions highlight the need to adequately address the challenges posed to the sustainability in outer space. The preservation of the access to and usability of outer space in the long-term requires that action is taken which has to be the result of both mitigation and remediation measures for existing and future space missions. As the enforcement of such technical measures will depend on adequate regulation, they need to be approached also from a legal perspective. The deficiencies in law for space debris remediation mechanisms originate from the fact that although technical concepts have been developed, the legal framework for space activities does not impose any legal obligations for debris removal and on-orbit servicing. Nevertheless, an overview of the relevant legal framework shows that there is a legal basis for the protection of the outer space environment which can, as has already been the case with space debris mitigation guidelines, be substantiated in more concrete terms by the formulation of voluntary, non-binding instruments and included in national legislation.
Daylight space debris laser ranging
Satellite laser ranging allows to measure distances to satellites equipped with retroreflectors in orbits up to 36000 km. Utilizing a higher powered laser, space debris laser ranging detects diffuse reflections from defunct satellites or rocket bodies up to a distance of 3000 km. So far space debris laser ranging was only possible within a few hours around twilight while it is dark at the satellite laser ranging station and space debris is illuminated by the sun. Here we present space debris laser ranging results during daylight. Space debris objects are visualized against the blue sky background and biases corrected in real-time. The results are a starting point for all space debris laser ranging stations to drastically increase their output in the near future. A network of a few stations worldwide will be able to improve orbital predictions significantly as necessary for removal missions, conjunction warnings, avoidance maneuvers or attitude determination. Space debris laser ranging is a technique to measure distances to defunct satellites or rocket bodies in orbits around Earth which was only possible within a few hours around twilight. Here, the authors show the first space debris laser ranging results during daylight while correcting inaccurate predictions using a real-time target detection software.
A review of space tether in new applications
Ever since the space tether was first proposed by Tsiolkovsky, it has been extensively utilized in space missions, for attitude stabilization, momentum exchange, and space elevators. Developments in engineering technology and changes in the space environment have diversified the current applications for the space tether. New applications for the space tether include the Tethered Space Robot, Tethered Space Net, and Tethered Spacecraft Formation. These are quickly being adapted for in-orbit maintenance such as fueling service, orbit maneuvering, and active space debris capture/removal. The flexibility and elasticity of the space tether lead to complex issues with tethered space systems, including the mechanics design, dynamics modeling and analysis, and control scheme design. In this paper, we review several new applications for the space tether during service in orbit, and research the on structure, dynamics, and control of each application. This review is conducted to provide an overall summary of the space tether for On-Orbit Servicing, and further the conversation regarding possible research interests in the future.
RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris
The RemoveDEBRIS mission has been the first mission to successfully demonstrate, in-orbit, a series of technologies that can be used for the active removal of space debris. The mission started late in 2014 and was sponsored by a grant from the EC that saw a consortium led by the Surrey Space Centre to develop the mission, from concept to in-orbit demonstrations, that terminated in March 2019. Technologies for the capture of large space debris, like a net and a harpoon, have been successfully tested together with hardware and software to retrieve data on non-cooperative target debris kinematics from observations carried out with on board cameras. The final demonstration consisted of the deployment of a drag-sail to increase the drag of the satellite to accelerate its demise.
Space debris and satellite laser ranging combined using a megahertz system
Satellite laser ranging and space debris laser ranging are two closely related range measurement techniques with slightly different setups relying on different lasers. Satellite laser ranging measures light reflections of corner cube retro reflectors at mm-level range precision. Space debris laser ranging gathers diffuse reflections from the whole space debris object and offers a precision down to the sub meter-level. Within this work we show the usage of Megahertz lasers to combine the strengths of both systems within one setup. During the regular tracking schedule to scientific satellite laser ranging targets, specific space debris objects of interest can then be tracked without the need of making adaptions to the system. Megahertz satellite laser ranging measurements to the defunct Jason-2 satellite lead to a measurement precision down to a few μ m when ranging to retro reflectors. Space debris laser ranging data reveals reflections from individual surfaces of the target and allows to draw conclusions on the rotational behavior. Space debris laser ranging, and satellite laser ranging are currently performed with slightly different setups. Here, the authors show a single setup with a Megahertz laser for both high-precision satellite laser ranging and space debris laser ranging.
Design of a fuel-efficient scheme for space debris removal
In view of the growing threat of space debris and the limitation of current debris removal method. A novel conceptual solution for multiple space debris removal is proposed, and a low-cost and miniaturized removal system is designed in this paper. And the structural composition of this removal system is designed and the space debris removal process is introduced, the system can be divided into two components including satellite platform and many mission CubeSats. The mission CubeSats can be re-launched into the transfer orbits of different space debris through a push-launch method, and the fuel consumptions on the removal mission for three space debris, using the proposed multiple removal system and traditional removal system are calculated and compared. The compared results demonstrated that the proposed solution for multiple space debris removal and the designed removal system can decrease the fuel consumptions effectively.
Precursor magneto-sonic solitons in a plasma from a moving charge bunch
The nature of fore-wake excitations created by a charge bunch moving in a magnetized plasma is investigated using particle-in-cell simulations. Our studies establish for the first time the existence of precursor magneto-sonic solitons traveling ahead of a moving charge bunch. The nature of these excitations and the conditions governing their existence are delineated. We also confirm earlier molecular dynamic and fluid simulation results related to electrostatic precursor solitons obtained in the absence of a magnetic field. The electromagnetic precursors could have interesting practical applications such as in the interpretation of observed nonlinear structures during the interaction of the solar wind with the Earth and the Moon and may also serve as useful tracking signatures of charged space debris traveling in the ionosphere.
The impact of Space Law and space debris mitigation measures on the debris scenario around the Earth
In face of the growing exploration of space by humanity, at first this work aims to synthesize a little information from Space Law based on legislations and discussions on the subject. Going further, the main focus of the project are the space debris and its mitigation guidelines of the United Nations Committee on the Peaceful Uses of Outer Space. The possible consequences of non-compliance with these standards for orbits around the Earth have been investigated and the scenario at the date of approval of the document implementing the guidelines at the UN has been compared with the current scenario in order to verify the impact of the measures summarized therein on the missions launched since then.
Design and guidance of a multi-active debris removal mission
Space debris have become exceedingly dangerous over the years as the number of objects in orbit continues to increase. Active debris removal (ADR) missions have gained significant interest as effective means of mitigating the risk of collision between objects in space. This study focuses on developing a multi-ADR mission that utilizes controlled reentry and deorbiting. The mission comprises two spacecraft: a Servicer that brings debris to a low altitude and a Shepherd that rendezvous with the debris to later perform a controlled reentry. A preliminary mission design tool (PMDT) was developed to obtain time and fuel optimal trajectories for the proposed mission while considering the effect of J 2 , drag, eclipses, and duty cycle. The PMDT can perform such trajectory optimizations for multi-debris missions with computational time under a minute. Three guidance schemes are also studied, taking the PMDT solution as a reference to validate the design methodology and provide guidance solutions to this complex mission profile.