Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,700 result(s) for "decadal variability"
Sort by:
An Evaluation of the Performance of the Twentieth Century Reanalysis Version 3
The performance of a new historical reanalysis, the NOAA–CIRES–DOE Twentieth Century Reanalysis version 3 (20CRv3), is evaluated via comparisons with other reanalyses and independent observations. This dataset provides global, 3-hourly estimates of the atmosphere from 1806 to 2015 by assimilating only surface pressure observations and prescribing sea surface temperature, sea ice concentration, and radiative forcings. Comparisons with independent observations, other reanalyses, and satellite products suggest that 20CRv3 can reliably produce atmospheric estimates on scales ranging from weather events to long-term climatic trends. Not only does 20CRv3 recreate a ‘‘best estimate’’ of the weather, including extreme events, it also provides an estimate of its confidence through the use of an ensemble. Surface pressure statistics suggest that these confidence estimates are reliable. Comparisons with independent upper-air observations in the Northern Hemisphere demonstrate that 20CRv3 has skill throughout the twentieth century. Upper-air fields from 20CRv3 in the late twentieth century and early twenty-first century correlate well with full-input reanalyses, and the correlation is predicted by the confidence fields from 20CRv3. The skill of analyzed 500-hPa geopotential heights from 20CRv3 for 1979–2015 is comparable to that of modern operational 3–4-day forecasts. Finally, 20CRv3 performs well on climate time scales. Long time series and multidecadal averages of mass, circulation, and precipitation fields agree well with modern reanalyses and station- and satellite-based products. 20CRv3 is also able to capture trends in tropospheric-layer temperatures that correlate well with independent products in the twentieth century, placing recent trends in a longer historical context.
Strong Oceanic Forcing on Decadal Surface Temperature Variability Over Global Ocean
Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Plain Language Summary Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics. Key Points In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation
ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2
This study presents a description of the El Niño–Southern Oscillation (ENSO) and Pacific Decadal Variability (PDV) in a multicentury preindustrial simulation of the Community Earth System Model Version 2 (CESM2). The model simulates several aspects of ENSO relatively well, including dominant timescale, tropical and extratropical precursors, composite evolution of El Niño and La Niña events, and ENSO teleconnections. The good model representation of ENSO spectral characteristics is consistent with the spatial pattern of the anomalous equatorial zonal wind stress in the model, which results in the correct adjustment timescale of the equatorial thermocline according to the delayed/recharge oscillator paradigms, as also reflected in the realistic time evolution of the equatorial Warm Water Volume. PDV in the model exhibits a pattern that is very similar to the observed, with realistic tropical and South Pacific signatures which were much weaker in some of the CESM2 predecessor models. The tropical component of PDV also shows an association with ENSO decadal modulation which is similar to that found in observations. However, the ENSO amplitude is about 30% larger than observed in the preindustrial CESM2 simulation, and even larger in the historical ensemble, perhaps as a result of anthropogenic influences. In contrast to observations, the largest variability is found in the central Pacific rather than in the eastern Pacific, a discrepancy that somewhat hinders the model's ability to represent a full diversity in El Niño spatial patterns and appears to be associated with an unrealistic confinement of the precipitation anomalies to the western Pacific. Plain Language Summary The Community Earth System Model Version 2 (CESM2) is the latest version of the Earth System models developed at the National Center for Atmospheric Research in Boulder, CO. This study examines how well CESM2 simulates the El Niño–Southern Oscillation (ENSO), the leading mode of climate variability in the tropical Pacific at interannual timescales, with a large influence on the global climate and very important societal impacts. The modeled ENSO exhibits a larger amplitude than observed, with anomalies displaced further west than in observations, but with dominant timescale, temporal evolution, precursors, and teleconnections in good agreement with observations. This study also examines the model performance in simulating climate variability at decadal timescales in the Pacific sector. The spatial pattern of Pacific Decadal Variability and the relationship between decadal variations in the tropical Pacific and decadal ENSO modulation are well simulated by CESM2. Key Points El Niño–Southern Oscillation in the model exhibits realistic timescale, precursors, temporal evolution, and teleconnections The El Niño–Southern Oscillation amplitude is about 30% larger than observed, with anomalies displaced too far west than observed The model Pacific Decadal Variability has a realistic spatial pattern
Decadal-scale teleconnection between South Atlantic SST and southeast Australia surface air temperature in austral summer
Austral summer (December–February) surface air temperature over southeast Australia (SEA) is found to be remotely influenced by sea surface temperature (SST) in the South Atlantic at decadal time scales. In austral summer, warm SST anomalies in the southwest South Atlantic induce concurrent above-normal surface air temperature over SEA. This decadal-scale teleconnection occurs through the eastward propagating South Atlantic–Australia (SAA) wave train triggered by SST anomalies in the southwest South Atlantic. The excitation of the SAA wave train is verified by forcing experiments based on both linear barotropic and baroclinic models, propagation pathway and spatial scale of the observed SAA wave train are further explained by the Rossby wave ray tracing analysis in non-uniform basic flow. The SAA wave train forced by southwest South Atlantic warming is characterized by an anomalous anticyclone off the eastern coast of the Australia. Temperature diagnostic analyses based on the thermodynamic equation suggest anomalous northerly flows on western flank of this anticyclone can induce low-level warm advection anomaly over SEA, which thus lead to the warming of surface air temperature there. Finally, SST-forced atmospheric general circulation model ensemble experiments also demonstrate that SST forcing in the South Atlantic is associated with the SAA teleconnection wave train in austral summer, this wave train then modulate surface air temperature over SEA on decadal timescales. Hence, observations combined with numerical simulations consistently demonstrate the decadal-scale teleconnection between South Atlantic SST and summertime surface air temperature over SEA.
Ocean temperature response to idealized Gleissberg and de Vries solar cycles in a comprehensive climate model
The ∼90‐year Gleissberg and ∼200‐year de Vries cycles have been identified as two distinctive quasi‐periodic components of Holocene solar activity. Evidence exists for the impact of such multi‐decadal to centennial‐scale variability in total solar irradiance (TSI) on climate, but concerning the ocean, this evidence is mainly restricted to the surface response. Here we use a comprehensive global climate model to study the impact of idealized solar forcing, representing the Gleissberg and de Vries cycles, on global ocean potential temperature at different depth levels, after a recent proxy record indicates a signal of TSI anomalies in the northeastern Atlantic at mid‐depth. Potential impacts of TSI anomalies on deeper oceanic levels are climatically relevant due to their possible effect on ocean circulation by altering water mass characteristics. Simulated solar anomalies are shown to penetrate the ocean down to at least deep‐water levels. Despite the fact that the two forcing periods differ only by a factor of ∼2, the spatial pattern of response is significantly distinctive between the experiments, suggesting different mechanisms for solar signal propagation. These are related to advection by North Atlantic Deep Water flow (200‐year forcing), and barotropic adjustment in the South Atlantic in response to a latitudinal shift of the westerly wind belt (90‐year forcing). Key Points Idealized solar forcing experiments are performed with a global climate model Solar anomalies are shown to penetrate the ocean to deep‐water levels The mechanisms of solar signal propagation are dependent on the forcing period
Decadal Indian Ocean Dipolar Variability and Its Relationship with the Tropical Pacific
A robust decadal Indian Ocean dipolar variability (DIOD) is identified in observations and found to be related to tropical Pacific decadal variability (TPDV). A Pacific Ocean-global atmosphere (POGA) experiment, with fixed radiative forcing, is conducted to evaluate the DIOD variability and its relationship with the TPDV. In this experiment, the sea surface temperature anomalies are restored to observations over the tropical Pacific, but left as interactive with the atmosphere elsewhere. The TPDV-forced DIOD, represented as the ensemble mean of 10 simulations in POGA, accounts for one third of the total variance. The forced DIOD is triggered by anomalous Walker circulation in response to the TPDV and develops following Bjerknes feedback. Thermocline anomalies do not exhibit a propagating signal, indicating an absence of oceanic planetary wave adjustment in the subtropical Indian Ocean. The DIOD-TPDV correlation differs among the 10 simulations, with a low correlation corresponding to a strong internal DIOD independent of the TPDV. The variance of this internal DIOD depends on the background state in the Indian Ocean, modulated by the thermocline depth off Sumatra/Java.
Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH
The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50–60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 10 6  m 3  s −1 ) is identified, which manifests itself as a monopole causing the overturning to simultaneously strengthen (/weaken) and deepen (/shallow) as a whole. Eight years before the AMOC peaks, density in the Labrador-Irminger Sea region reaches a maximum, triggering deep water formation. This density change is caused by a counterclockwise advection of temperature and salinity anomalies at lower latitudes, which we relate to the north-south excursions of the subpolar-subtropical gyre boundary and variations in strength and position of the subpolar gyre and the North Atlantic Current. The AMOC fluctuations are not directly forced by the atmosphere, but occur in a delayed response of the ocean to forcing by the North Atlantic Oscillation, which initiates “intergyre”-gyre fluctuations. Associated with the AMOC is a 60-year sea surface temperature variability in the Atlantic, with a pattern and timescale showing similarities with the real-world Atlantic Multidecadal Variability. This good agreement with observations lends a certain degree of credibility that the mechanism that is described in this article could be seen as representative of the real climate system.
Multi-decadal variability of sudden stratospheric warmings in an AOGCM
The variability in the number of major sudden stratospheric warmings (SSWs) is analyzed in a multi‐century simulation under constant forcing using a stratosphere resolving atmosphere‐ocean general circulation model. A wavelet‐analysis of the SSW time series identifies significantly enhanced power at a period of 52 years. The coherency of this signal with tropospheric and oceanic parameters is investigated. The strongest coherence is found with the North Atlantic ocean‐atmosphere heat‐flux from November to January. Here, an enhanced heat‐flux from the ocean into the atmosphere is related to an increase in the number of SSWs. Furthermore, a correlation is found with Eurasian snow cover in October and the number of blockings in October/November. These results suggest that the multi‐decadal variability is generated within the ocean‐troposphere‐stratosphere system. A two‐way interaction of the North Atlantic and the atmosphere buffers and amplifies stratospheric anomalies, leading to a coupled multi‐decadal mode.
Estimation of the SST Response to Anthropogenic and External Forcing and Its Impact on the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation
Two large ensembles (LEs) of historical climate simulations are used to compare how various statistical methods estimate the sea surface temperature (SST) changes due to anthropogenic and other external forcing, and how their removal affects the internally generated Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the SST footprint of the Atlantic meridional overturning circulation (AMOC). Removing the forced SST signal by subtracting the global mean SST (GM) or a linear regression on it (REGR) leads to large errors in the Pacific. Multidimensional ensemble empirical mode decomposition (MEEMD) and quadratic detrending only efficiently remove the forced SST signal in one LE, and cannot separate the short-term response to volcanic eruptions from natural SST variations. Removing a linear trend works poorly. Two methods based on linear inverse modeling (LIM), one where the leading LIM mode represents the forced signal and another using an optimal perturbation filter (LIMopt), perform consistently well. However, the first two LIM modes are sometimes needed to represent the forced signal, so the more robust LIMopt is recommended. In both LEs, the natural AMO variability seems largely driven by the AMOC in the subpolar North Atlantic, but not in the subtropics and tropics, and the scatter in the AMOC–AMO correlation is large between individual ensemble members. In three observational SST reconstructions for 1900–2015, linear and quadratic detrending, MEEMD, and GM yield somewhat different AMO behavior, and REGR yields smaller PDO amplitudes. Based on LIMopt, only about 30% of the AMO variability is internally generated, as opposed to more than 90% for the PDO. The natural SST variability contribution to global warming hiatus is discussed.
Characterization of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia
Intense extra‐tropical cyclones are often associated with strong winds, heavy precipitation and socio‐economic impacts. Over southwestern Europe, such storms occur less often, but still cause high economic losses. We characterize the large‐scale atmospheric conditions and cyclone tracks during the top‐100 potential losses over Iberia associated with wind events. Based on 65 years of reanalysis data, events are classified into four groups: (1) cyclone tracks crossing over Iberia on the event day (‘Iberia’), (2) cyclones crossing further north, typically southwest of the British Isles (‘North’), (3) cyclones crossing southwest to northeast near the northwest tip of Iberia (‘West’), and (4) so called ‘Hybrids’, characterized by a strong pressure gradient over Iberia because of the juxtaposition of low and high pressure centres. Generally, ‘Iberia’ events are the most frequent (31–45% for top‐100 vs top‐20), while ‘West’ events are rare (10–12%). Seventy percent of the events were primarily associated with a cyclone. Multi‐decadal variability in the number of events is identified. While the peak in recent years is quite prominent, other comparably stormy periods occurred in the 1960s and 1980s. This study documents that damaging wind storms over Iberia are not rare events, and their frequency of occurrence undergoes strong multi‐decadal variability.