Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "delayed detached-eddy simulation"
Sort by:
Improved Delayed Detached Eddy Simulation of the Slipstream and Trackside Pressure of Trains with Different Horizontal Profiles
The slipstream caused by high-speed trains may harm pedestrians and workers trackside. In general, the characteristics of the slipstream are influenced mainly by the nose shape of the train. The present study explores the slipstream caused by high-speed trains with three different horizontal nose profiles based on the results of three-dimensional, improved delayed detached eddy simulation (IDDES) with an unsteady turbulence model and a set of 1/8th scaled train models. The results obtained using this numerical methodology are in good agreement with those obtained from corresponding wind tunnel tests. The trackside pressure changes around the train models are also captured and analyzed. The analysis reveals that the width of the nose can significantly influence the magnitude and arrival time of slipstream velocity and pressure peaks. The results and proposed numerical methodology can be used as guidelines for the design of high-speed train nose shapes.
Investigation of the Rotor Wake of Horizontal Axis Wind Turbine under Yawed Condition
The wake and the lack of existing velocity behind the wind turbine affect the energy production and the mechanical integrity of wind turbines downstream in the wind farms. This paper presents an investigation of the unsteady flow around a wind turbine under yawed condition. The simulations and experimental measures are made for the yaw angle rotor 30[degrees] and 0[degrees]. The wind velocity is 9.3 m/s and the rotation velocity rotor of the wind turbine in 1300, 1500 and 1800 rpm. The wind turbine rotor which is modeled is of a commercial wind turbine i.e. Rutland 503. The approach Improved Delayed Detached Eddy Simulation (IDDES) based on the SST turbulence model is used in the modeling of the flow. The solutions are obtained by using the solver which uses finite volume method. The particle image velocimetry (PIV) method is used in wind tunnel measurements in the experimental laboratory of the ENSAM Paris-Tech. The yawed downstream wake of the rotor is compared with that obtained by the experimental measurements. The results illustrate perfectly the development of the near and far wake of the rotor operation. It is observed that the upstream wind turbine yawed will have a positive impact on the power of the downstream turbine due the distance reduction of the downstream wake of the wind turbine. However the power losses are important for yawed wind turbine when compared with the wind turbine without yaw. The improved understanding of the unsteady environmental of the Horizontal Axis wind Turbine allows optimizing wind turbine structures and the number of wind turbines in wind farms.
Scale effects on bow wave breaking of KCS ship model: Insights from DDES investigations
Ship bow wave breaking is a common phenomenon during navigation, involving complex multi-scale flow interactions. However, the understanding of this intense free surface flow issue is not sufficiently deep, especially regarding the lack of research on the impact of scale effects on bow wave breaking. This paper focuses on the benchmark ship model KCS and conducts numerical simulations and comparative analyses of bow wave breaking for three model scales under the condition of Fr = 0.35 . The numerical calculations were performed using the in-house computational fluid dynamics (CFD) solver naoe-FOAM-SJTU, which is developed on the open source platform OpenFOAM. Delayed detached eddy simulation (DDES) method is utilized to calculate the viscous flow field around the ship hull. The present method was validated through measurement data of wave profiles and wake flows obtained from model tests. Flow field results for three different scales, including bow wave profiles, vorticity at various sections, and wake distribution, were presented and analyzed. The results indicate that there is small difference in the bow wave overturning and breaking for the first two occurrences across different scales. However, considerable effects of scale are observed on the temporal and spatial variations of the free surface breaking pattern after the second overturning. The findings of this study can serve as valuable data references for the analysis of scale effects in ship bow wave breaking phenomena.
Three-Dimensional Aerodynamics and Vortex-Shedding Characteristics of Wind Turbine Airfoils over 360-Degree Angles of Attack
In this work, we present the first three-dimensional (3D) computational investigation of wind turbine airfoils over 360° angles of attack to predict unsteady aerodynamic loads and vortex-shedding characteristics. To this end, static–airfoil simulations are performed for the FFA-W3 airfoil family at a Reynolds number of 107 with the Improved Delayed Detached Eddy Simulation turbulence model. Aerodynamic forces reveal that the onset of boundary-layer instabilities and flow separation does not necessarily coincide with the onset of stall. In addition, a comparison with two-dimensional simulation data and flat plate theory extension of airfoil polars, suggest that, in the deep stall regime, 3D effects remain critical for predicting both the unsteady loads and the vortex-shedding dynamics. For all airfoils, the vortex-shedding frequencies are found to be inversely proportional to the wake width. In the case of slender airfoils, the frequencies are nearly independent of the airfoil thickness, and their corresponding Strouhal number St is approximately 0.15. Based on the calculated St, the potential for shedding frequencies to coincide with the natural frequencies of the International Energy Agency 15 MW reference wind turbine blades is investigated. The analysis shows that vortex-induced vibrations occur primarily at angles of attack of around ±90° for all airfoils.
RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical Axis Water Turbine
Nowadays, the global energy crisis has encouraged the use of alternative sources like the energy available in the water currents of seas and rivers. The vertical axis water turbine (VAWT) is an interesting option to harness this energy due to its advantages of facile installation, maintenance and operation. However, it is known that its efficiency is lower than that of other types of turbines due to the unsteady effects present in its flow physics. This work aims to analyse through Computational Fluid Dynamics (CFD) the turbulent flow dynamics around a small scale VAWT confined in a hydrodynamic tunnel. The simulations were developed using the Unsteady Reynolds Averaged Navier Stokes (URANS), Detached Eddy Simulation (DES) and Delayed Detached Eddy Simulation (DDES) turbulence models, all of them based on k-ω Shear Stress Transport (SST). The results and analysis of the simulations are presented, illustrating the influence of the tip speed ratio. The numerical results of the URANS model show a similar behaviour with respect to the experimental power curve of the turbine using a lower number of elements than those used in the DES and DDES models. Finally, with the help of both the Q-criterion and field contours it is observed that the refinements made in the mesh adaptation process for the DES and DDES models improve the identification of the scales of the vorticity structures and the flow phenomena present on the near and far wake of the turbine.
Wall-Modeled and Hybrid Large-Eddy Simulations of the Flow over Roughness Strips
The flow over alternating roughness strips oriented normally to the mean stream is studied using wall-modeled large-eddy simulations (WMLES) and improved delayed detached-eddy simulations (IDDES) (a hybrid method solving the Reynolds-averaged Navier–Stokes (RANS) equations near the wall and switching to large-eddy simulations (LES) in the core of the flow). The calculations are performed in an open-channel configuration. Various approaches are used to account for roughness by either modifying the wall boundary condition for WMLES or the model itself for IDDES or by adding a drag forcing term to the momentum equations. By comparing the numerical results with the experimental data, both methods with both roughness modifications are shown to reproduce the non-equilibrium effects, but noticeable differences are observed. The WMLES, although affected by the underlying equilibrium assumption, predicts the return to equilibrium of the skin friction in good agreement with the experiments. The velocity predicted by the IDDES does not have memory of the upstream conditions and recovers to the equilibrium conditions faster. Memory of the upstream conditions appears to be a critical factor for the accurate computational modeling of this flow.
Aerodynamic discrepancies of high-speed trains meeting within two types noise barriers: considering modeling scale ratio
Purpose Sustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this paper is to investigate the aerodynamic discrepancies of trains when they meet within two types of rectangular noise barriers: fully enclosed (FERNB) and semi-enclosed with vertical plates (SERNBVB). The research also considers the sensitivity of the scale ratio in these scenarios. Design/methodology/approach A 1:16 scaled moving model test analyzed spatiotemporal patterns and discrepancies in aerodynamic pressures during train meetings. Three-dimensional computational fluid dynamics models, with scale ratios of 1:1, 1:8 and 1:16, used the improved delayed detached eddy simulation turbulence model and slip grid technique. Comparing scale ratios on aerodynamic pressure discrepancies between the two types of noise barriers and revealing the flow field mechanism were done. The goal is to establish the relationship between aerodynamic pressure at scale and in full scale. Findings The aerodynamic pressure on SERNBVB is influenced by the train’s head and tail waves, whereas for FERNB, it is affected by pressure wave and head-tail waves. Notably, SERNBVB's aerodynamic pressure is more sensitive to changes in scale ratio. As the scale ratio decreases, the aerodynamic pressure on the noise barrier gradually increases. Originality/value A train-meeting moving model test is conducted within the noise barrier. Comparison of aerodynamic discrepancies during train meets between two types of rectangular noise barriers and the relationship between the scale and the full scale are established considering the modeling scale ratio.
Numerical Study of Turbulent Flow Fields Over Steep Terrain by Using Modified Delayed Detached-Eddy Simulations
Turbulent flow fields over a two-dimensional steep ridge and three-dimensional steep hill with rough and smooth surfaces are investigated by using a delayed detached-eddy simulation (DDES) with the specified height as a new control parameter. The applicability of typical turbulence models in previous studies is evaluated by using validation metrics. While all turbulence models simulate the turbulent flow fields over the steep rough terrain well, the k − ε model overestimates the mean wind speed and underestimates the turbulent kinetic energy over steep, smooth terrain. The large-eddy simulation captures the large-scale vortices and improves the mean wind speed, but overestimates the turbulent kinetic energy due to the inaccurate specification of the surface roughness. The detached-eddy simulation considering the surface roughness shows further improvement, but still overestimates the turbulent kinetic energy, since the region using the Reynolds-averaged Navier–Stokes model is too thin. The modified DDES model with a new control parameter is suitable for the prediction of the mean wind speed and turbulence as demonstrated by the visualization of instantaneous flow fields through vortex cores, and a quadrant analysis to examine the organized motion, with strong organized motions identified in the wake region of smooth terrain. Roller vortices are significant on the lee side of the two-dimensional smooth ridge, while horseshoe vortices appear in the wake region of the three-dimensional smooth hill.
A Lagrangian Analysis of Tip Leakage Vortex in a Low-Speed Axial Compressor Rotor
A Lagrangian method is introduced to analyze the tip leakage vortex (TLV) behavior in a low-speed axial compressor rotor. The finite-time Lyapunov exponent (FTLE) fields are calculated based on the delayed detached-eddy simulation (DDES) results and identifying the FTLE ridges as Lagrangian coherent structures (LCSs). The computational method of the FTLE field in three-dimensional unsteady flow fields is discussed and then applied to the instantaneous flow fields at both the design and near-stall conditions. Results show that the accuracy of the particle trajectory and the density of the initial grid of the particle trajectory greatly affect the results of the FTLE field and, thus, the LCSs. Compared to the Eulerian Q method, which is calculated based on the symmetric and anti-symmetric components of the local velocity gradient tensor, the Lagrangian method has great potential in unraveling the mechanism of complex vortex structures. The LCSs show a transport barrier between the TLV and the secondary TLV, indicating two separate vortices. The aLCSs show the bubble-like and bar-like structure in the isosurfaces corresponding to the bubble and spiral breakdown patterns.
A Modified Shielding and Rapid Transition DDES Model for Separated Flows
In this paper, the major problems associated with detached eddy simulation (DES) (namely, modeled stress depletion (MSD) and slowing of the RANS to LES transition (RLT)) are discussed and reviewed, and relevant improvements are developed. A modified version for the delayed DES (DDES) method with adaptive modified adequate shielding and rapid transition is proposed; this is called MSRT DDES. The modified shielding strategy can be adjusted adaptively according to the local flow conditions: keeping the RANS behavior in the whole boundary layer when there is no resolved turbulence, and weakening the shielding function when resolved turbulence exists in the mainstream over the boundary layer. This strategy can significantly ameliorate the MSD in the RANS boundary layer, regardless of the mesh refinement, and avoid excessive shielding in the fully developed resolved turbulence that may otherwise delay the development of the separated and reattached flow. Three cases are designed to test the modified DDES, namely, complete shielding in the RANS zone of a boundary layer (the zero-pressure gradient turbulent boundary layer with the refined mesh), modified adaptive improved shielding with a rapid transition (the flow over a hump), and the overall performance in a complex 3D separation (the corner separation in a compressor cascade). The results show that the modified shielding function is more physical than earlier proposals compared to shielding functions, and according to detailed comparisons of the wall skin friction coefficients, velocity profiles, total pressure-loss coefficients, entropy production analyses, and so on, the MSD and RLT problems are moderately alleviated by the MSRT DDES.