Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,617 result(s) for "derivatization"
Sort by:
Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their‚ in several cases‚ more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI.
Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers
The anniversary of the journal “Cellulose” is an opportunity to review innovations that were introduced during the past 25 years. Of these, from our perspective, the development of solvents that dissolve cellulose physically, i.e., without formation of covalent bonds is most relevant. The reasons are that cellulose can be regenerated from these media in different shapes and transformed into many important derivatives. Twenty-five years is a long time-span! As the volume of information on the applications of the above-mentioned solvents in cellulose chemistry is extensive, we made choices to reach a balance between the amount of material covered and the length of the review. Consequently, we focus on cellulose derivatization under homogeneous reaction conditions to produce selected derivatives. We dwell on the latter because a comprehensive discussion was recently published on derivatization under heterogeneous and homogeneous conditions (Heinze et al. in Cellulose derivatives, Springer, Cham, pp 259–292, 2018a ). The derivatives selected are esters of organic acids, ionic and nonionic ethers because of their tremendous commercial and scientific importance. Cellulose derivatization in homogeneous media is advantageous because of much better control of product properties relative to those obtained under the heterogeneous counterparts. These properties include degree of substitution in the anhydroglucose unit and along the biopolymer back-bone, and regioselectivity. Thus, novel cellulose derivatives were prepared that are not accessible under heterogeneous conditions. The requirement to dissolve cellulose physically is to disrupt hydrogen bonding and hydrophobic interactions. Thus, the solvents employed to dissolve cellulose are usually composed of strong electrolytes whose cations and anions interact preferentially with cellulose. These electrolytes are used pure or as solutions in water or dipolar aprotic solvents. Salient examples include LiCl/ N , N -dimethylacetamide, tetra( n -butyl)ammonium fluoride·3H 2 O/dimethyl sulfoxide, ionic liquids, salts of quaternary amines and super-bases. We discuss briefly the essentials of each solvent in terms of its mechanism of cellulose dissolution and show the most relevant results regarding its application for obtaining esters and ethers and back the discussion with relevant references. This information is summarized at the end of the review. We hope that this historical perspective shows the innovations made since the first publication of “Cellulose” and points out to future possibilities—with potential industrial application—of this renewable raw material and its biocompatible and biodegradable derivatives. Graphical abstract
On-tissue amidation of sialic acid with aniline for sensitive imaging of sialylated N-glycans from FFPE tissue sections via MALDI mass spectrometry
Spatial visualization of glycans within clinical tissue samples is critical for discovery of disease-relevant glycan dysregulations. Herein, we develop an on-tissue derivatization strategy for sensitive spatial visualization of N-glycans from formalin-fixed paraffin-embedded (FFPE) tissue sections, based on amidation of sialic acid residues with aniline. The sialylated N-glycans were stabilized and given enhanced signal intensity owing to selective capping of a phenyl group to the sialic acid residue after aniline labeling. Proof-of-concept experiments, including determinations of sialylglycopeptide and N-glycans enzymatically released from glycoproteins, were performed. Further, mass spectrometry (MS) imaging of N-glycans on human laryngeal cancer FFPE tissue sections was conducted via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), based on our strategy for on-tissue amidation of sialylated N-glycans. We obtained higher sialylated N-glycan coverages for both the glycoproteins and cancer tissue samples, demonstrating that the detection sensitivity for sialylated N-glycans is notably improved by amidation derivatization. We also characterized N-glycan heterogeneity across the human laryngeal cancer tissue section, showing N-glycan dysregulation in the tumor region.
Chemical tagging mass spectrometry: an approach for single-cell omics
Single-cell (SC) analysis offers new insights into the study of fundamental biological phenomena and cellular heterogeneity. The superior sensitivity, high throughput, and rich chemical information provided by mass spectrometry (MS) allow MS to emerge as a leading technology for molecular profiling of SC omics, including the SC metabolome, lipidome, and proteome. However, issues such as ionization suppression, low concentration, and huge span of dynamic concentrations of SC components lead to poor MS response for certain types of molecules. It is noted that chemical tagging/derivatization has been adopted in SCMS analysis, and this strategy has been proven an effective solution to circumvent these issues in SCMS analysis. Herein, we review the basic principle and general strategies of chemical tagging/derivatization in SCMS analysis, along with recent applications of chemical derivatization to single-cell metabolomics and multiplexed proteomics, as well as SCMS imaging. Furthermore, the challenges and opportunities for the improvement of chemical derivatization strategies in SCMS analysis are discussed.
Using HPLC with In-Column Derivatization to Authenticate Coffee Samples
Coffee is one of the world’s most popular beverages, with the global coffee capsule market worth over USD 4 billion and growing. The incidence of coffee fraud is estimated to be up to one in five coffees being contaminated with cheaper blends of coffee. Given the worsening extent of climate change, coffee crop yields are harder to maintain, while demand is increasing. The 2021 Brazil frost delaying or destroying many coffee crops is an example. Hence, the incidence of coffee fraud is expected to increase, and as the market becomes more complex, there needs to be faster, easier, and more robust means of real-time coffee authentication. In this study, we propose the use of novel approaches to postcolumn derivatization (termed herein as in-column derivatization) to visualize the antioxidant profiles of coffee samples, to be later used as indicators for authentication purposes. We propose three simple mathematical similarity metrics for the real-time identification of unknown coffee samples from a sample library. Using the CUPRAC assay, and these metrics, we demonstrate the capabilities of the technique to identify unknown coffee samples from within our library of thirty.
Lipidomics from sample preparation to data analysis: a primer
Lipids are amongst the most important organic compounds in living organisms, where they serve as building blocks for cellular membranes as well as energy storage and signaling molecules. Lipidomics is the science of the large-scale determination of individual lipid species, and the underlying analytical technology that is used to identify and quantify the lipidome is generally mass spectrometry (MS). This review article provides an overview of the crucial steps in MS-based lipidomics workflows, including sample preparation, either liquid–liquid or solid-phase extraction, derivatization, chromatography, ion-mobility spectrometry, MS, and data processing by various software packages. The associated concepts are discussed from a technical perspective as well as in terms of their application. Furthermore, this article sheds light on recent advances in the technology used in this field and its current limitations. Particular emphasis is placed on data quality assurance and adequate data reporting; some of the most common pitfalls in lipidomics are discussed, along with how to circumvent them.
Comparing derivatization reagents for quantitative LC–MS/MS analysis of a variety of vitamin D metabolites
The present study systematically compares the sensitivity and selectivity of the analysis of multiple vitamin D metabolites after chemical derivatization using different reagents for liquid chromatography-tandem mass spectrometry (LC–MS/MS). Generally, chemical derivatization is applied to vitamin D metabolites to increase the ionization efficiency, which is particularly important for very low abundant metabolites. Derivatization can also improve the selectivity of the LC separation. A wide variety of derivatization reagents has been reported in recent years, but information on their relative performance and applicability to different vitamin D metabolites is, unfortunately, not available in the literature. To fill this gap, we investigated vitamin D3, 3β-25-hydroxyvitamin D3 (3β-25(OH)D3), 3α-25-hydroxyvitamin D3 (3α-25(OH)D3), 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and compared response factors and selectivity after derivatizing with several important reagents, including four dienophile reagents (4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), 4-[2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalinyl)ethyl]-1,2,4-triazoline-3,5-dione (DMEQ-TAD), Amplifex, 2-nitrosopyridine (PyrNO)) as well as two reagents targeting hydroxyl groups: isonicotinoyl chloride (INC) and 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). In addition, a combination of dienophiles and hydroxyl group reagents was examined. For LC separations, reversed-phase C-18 and mixed-mode pentafluorophenyl HPLC columns using different compositions of the mobile phase were compared. With respect to detection sensitivity, the optimum derivatization reagent for the profiling of multiple metabolites was Amplifex. Nevertheless, FMP-TS, INC, PTAD, or PTAD combined with an acetylation reaction showed very good performance for selected metabolites. These reagent combinations provided signal enhancements on the order of 3- to 295-fold depending on the compound. Chromatographic separation of the dihydroxylated vitamin D3 species was readily achieved using any of the derivatization reactions, while for 25(OH)D3 epimers, only PyrNO, FMP, INC, and PTAD combined with acetylation enabled complete separation. In conclusion, we believe this study can serve as a useful reference for vitamin D laboratories, to help analytical and clinical scientists decide which derivatization reagent to choose for their application.
Structural characterization of N-acyl-homoserine lactones from bacterial quorum sensing using LC–MS/MS analyses after Paternò-Büchi derivatization in solution
Bacterial quorum sensing is a chemical language allowing bacteria to interact through the excretion of molecules called autoinducers, like N-acyl-homoserine lactones (AHLs) produced by Gram-negative Burkholderia and Paraburkholderia bacteria known as opportunistic pathogens. The AHLs differ in their acyl-chain length and may be modified by a 3-oxo or 3-hydroxy substituent, or C = C double bonds at different positions. As the bacterial signal specificity depends on all of these chemical features, their structural characterization is essential to have a better understanding of the population regulation and virulence phenomenon. This study aimed at enabling the localization of the C = C double bond on such specialized metabolites while using significantly lower amounts of biological material. The approach is based on LC–MS/MS analyses of bacterial extracts after in-solution derivatization by a photochemical Paternò-Büchi reaction, leading to the formation of an oxetane ring and subsequently to specific fragmentations when performing MS/MS experiments. The in-solution derivatization of AHLs was optimized on several standards, and then the matrix effect of bacterial extracts on the derivatization was assessed. As a proof of concept, the optimized conditions were applied to a bacterial extract enabling the localization of C = C bonds on unsaturated AHLs.
Stability of sample extracts of vitamin D3 metabolites after chemical derivatization for LC–MS/MS analysis
Liquid chromatography/tandem mass spectrometry (LC–MS/MS) is widely used to determine vitamin D3 metabolites in biological samples. The ionization efficiencies of these metabolites, however, are poor under electrospray ionization conditions. Moreover, the chromatographic separation of multiple vitamin D metabolites and their epimers can be challenging. For these reasons, chemical derivatization reagents are often used to improve sensitivity and selectivity of analysis. While the derivatization schemes have been proven to be very effective, one missing aspect is the investigation of the stability of the chemical derivatization products in stored sample extracts. In this study, we investigated the long-term stability of several vitamin D3 metabolites after 1 and 3 months of storage at − 20 °C. Five vitamin D3 metabolites were examined after derivatization with seven different derivatization reagents. Generally, Amplifex products were the most stable in the long term in our study with 11–20% degraded after 1 month of storage and 14–35% after 3 months. The stabilities for some of the metabolites′ 4-[2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalyl)ethyl]-1,2,4-triazoline-3,5-dione (DMEQ-TAD), 2-fluoro-1-methylpyridinium p-toluenesulfonate (FMP-TS), isonicotinoyl chloride (INC) and 4-phenyl-1,2,4-triazoline-3,5-dione acetylated (PTAD-Ac) products were also acceptable after 1 month of storage. Other derivatized metabolites, however, degraded extensively already after 1 month of storage, such as 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) (54–72% degradation) and 2-nitrosopyridine (PyrNO) (32–100% degradation). Importantly, for every metabolite, there was an optimum derivatization reagent that met the criteria of stability proposed by international regulatory bodies after 1 month of storage. Some derivatives were stable for even up to 3 months of storage, with degradation of less than 15%.
Spatial localization of β-unsaturated aldehyde markers in murine diabetic kidney tissue by mass spectrometry imaging
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Limitations in current diagnosis and screening methods have sparked a search for more specific and conclusive biomarkers. Hyperglycemic conditions generate a plethora of harmful molecules in circulation and within tissues. Oxidative stress generates reactive α-dicarbonyls and β-unsaturated hydroxyhexenals, which react with proteins to form advanced glycation end products. Mass spectrometry imaging (MSI) enables the detection and spatial localization of molecules in biological tissue sections. Here, for the first time, the localization and semiquantitative analysis of “reactive aldehydes” (RAs) 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) in the kidney tissues of a diabetic mouse model is presented. Ionization efficiency was enhanced through on-tissue chemical derivatization (OTCD) using Girard’s reagent T (GT), forming positively charged hydrazone derivatives. MSI analysis was performed using matrix-assisted laser desorption ionization (MALDI) coupled with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR). RA levels were elevated in diabetic kidney tissues compared to lean controls and localized throughout the kidney sections at a spatial resolution of 100 µm. This was confirmed by liquid extraction surface analysis–MSI (LESA-MSI) and liquid chromatography–mass spectrometry (LC–MS). This method identified β-unsaturated aldehydes as “potential” biomarkers of DN and demonstrated the capability of OTCD-MSI for detection and localization of poorly ionizable molecules by adapting existing chemical derivatization methods. Untargeted exploratory distribution analysis of some precursor lipids was also assessed using MALDI-FT-ICR-MSI.