Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16,906
result(s) for
"detection limit"
Sort by:
Simultaneous determination of perfluoroalkyl substances and bile acids in human serum using ultra-high-performance liquid chromatography–tandem mass spectrometry
2020
There is evidence of a positive association between per- and polyfluoroalkyl substances (PFASs) and cholesterol levels in human plasma, which may be due to common reabsorption of PFASs and bile acids (BAs) in the gut. Here we report development and validation of a method that allows simultaneous, quantitative determination of PFASs and BAs in plasma, using 150 μL or 20 μL of sample. The method involves protein precipitation using 96-well plates. The instrumental analysis was performed with ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS), using reverse-phase chromatography, with the ion source operated in negative electrospray mode. The mass spectrometry analysis was carried out using multiple reaction monitoring mode. The method proved to be sensitive, robust, and with sufficient linear range to allow reliable determination of both PFASs and BAs. The method detection limits were between 0.01 and 0.06 ng mL−1 for PFASs and between 0.002 and 0.152 ng mL−1 for BAs, with the exception of glycochenodeoxycholic acid (0.56 ng mL−1). The PFAS measured showed excellent agreement with certified plasma PFAS concentrations in NIST SRM 1957 reference serum. The method was tested on serum samples from 20 healthy individuals. In this proof-of-concept study, we identified significant associations between plasma PFAS and BA levels, which suggests that PFAS may alter the synthesis and/or uptake of BAs.
Journal Article
Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides
by
Zhang, Siyan
,
Lieber, Charles
,
Link, A. James
in
Amino acids
,
Animals
,
Antimicrobial Cationic Peptides
2010
The development of a robust and portable biosensor for the detection of pathogenic bacteria could impact areas ranging from waterquality monitoring to testing of pharmaceutical products for bacterial contamination. Of particular interest are detectors that combine the natural specificity of biological recognition with sensitive, label-free sensors providing electronic readout. Evolution has tailored antimicrobial peptides to exhibit broad-spectrum activity against pathogenic bacteria, while retaining a high degree of robustness. Here, we report selective and sensitive detection of infectious agents via electronic detection based on antimicrobial peptide-functionalized microcapacitive electrode arrays. The semiselective antimicrobial peptide magainin I—which occurs naturally on the skin of African clawed frogs—was immobilized on gold microelectrodes via a C-terminal cysteine residue. Significantly, exposing the sensor to various concentrations of pathogenic Escherichia coli revealed detection limits of approximately 1 bacterium/μL, a clinically useful detection range. The peptide-microcapacitive hybrid device was further able to demonstrate both Gram-selective detection as well as interbacterial strain differentiation, while maintaining recognition capabilities toward pathogenic strains of E. coli and Salmonella. Finally, we report a simulated “watersampling” chip, consisting of a microfluidic flow cell integrated onto the hybrid sensor, which demonstrates real-time on-chip monitoring of the interaction of E. coli cells with the antimicrobial peptides. The combination of robust, evolutionarily tailored peptides with electronic read-out monitoring electrodes may open exciting avenues in both fundamental studies of the interactions of bacteria with antimicrobial peptides, as well as the practical use of these devices as portable pathogen detectors.
Journal Article
Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor
by
Scamarcio Gaetano
,
Picca, Rosaria Anna
,
Sarcina Lucia
in
Antibodies
,
Bioelectricity
,
Biomarkers
2020
Early diagnosis of the infection caused by human immunodeficiency virus type-1 (HIV-1) is vital to achieve efficient therapeutic treatment and limit the disease spreading when the viremia is at its highest level. To this end, a point-of-care HIV-1 detection carried out with label-free, low-cost, and ultra-sensitive screening technologies would be of great relevance. Herein, a label-free single molecule detection of HIV-1 p24 capsid protein with a large (wide-field) single-molecule transistor (SiMoT) sensor is proposed. The system is based on an electrolyte-gated field-effect transistor whose gate is bio-functionalized with the antibody against the HIV-1 p24 capsid protein. The device exhibits a limit of detection of a single protein and a limit of quantification in the 10 molecule range. This study paves the way for a low-cost technology that can quantify, with single-molecule precision, the transition of a biological organism from being “healthy” to being “diseased” by tracking a target biomarker. This can open to the possibility of performing the earliest possible diagnosis.
Journal Article
New trends in single-molecule bioanalytical detection
by
Torsi Luisa
,
Scamarcio Gaetano
,
Macchia Eleonora
in
Assaying
,
Background noise
,
Bioelectricity
2020
Single-molecule sensing is becoming a major driver in biomarker assays as it is foreseen to enable precision medicine to enter into everyday clinical practice. However, among the single-molecule detection methods proposed so far, only a few are fully exploitable for the ultrasensitive label-free assay of biofluids. Firstly introduced single-molecule sensing platforms encompass low-background-noise fluorescent microscopy as well as plasmonic and electrical nanotransducers; these are generally able to sense at the nanomolar concentration level or higher. Label-based single-molecule technologies relying on optical transduction and microbeads that can scavenge and detect a few biomarkers in the bulk of real biofluids, reaching ultralow detection limits, have been recently commercialized. These assays, thanks to the extremely high sensitivity and convenient handling, are new trends in the field as they are paving the way to a revolution in early diagnostics. Very recently, another new trend is the label-free, organic bioelectronic electrolyte-gated large transistors that can potentially be produced by means of large-area low-cost technologies and have been proven capable to detect a protein at the physical limit in real bovine serum. This article offers a bird’s-eye view on some of the more significant single-molecule bioanalytical technologies and highlights their sensing principles and figures-of-merit such as limit of detection, need for a labelling step, and possibility to operate, also as an array, directly in real biofluids. We also discuss the new trend towards single-molecule proof-of-principle extremely sensitive technologies that can detect a protein at the zeptomolar concentration level involving label-free devices that potentially offer low-cost production and easy scalability.
Journal Article
Implementation of a miniaturized sensor system using screen-printed carbon electrodes for on-site detection of MDMA in seized drugs
by
Stelmaszczyk, Paweł
,
Stanaszek, Roman
,
Wietecha-Posłuszny, Renata
in
Amphetamines
,
Carbon
,
Chloride
2025
3,4-Methylenedioxymethamphetamine (MDMA), commonly known as ecstasy, is a widely abused psychoactive substance, especially in the context of club and party scenes. Due to its prevalence and the associated health risks, rapid and reliable methods for its detection are essential, particularly for forensic investigations. This study presents the development of a portable sensor system for the detection of MDMA using screen-printed carbon electrodes (SPCE) and square wave voltammetry (SWV) technique. The SPEs were manually fabricated in the laboratory, and the electrochemical behavior of MDMA was thoroughly characterized, with special attention given to the influence of pH on the oxidation process. The method was optimized for quantitative analysis with a detection limit of 0.5 µM and a linear range of 2.5–50 µM. The sensor demonstrated high reproducibility, satisfactory precision (intra-day CV%: 2.1–7.1 %; inter-day CV%: 5.4–6.3 %), and excellent recovery rates (89–105 %). The system was successfully applied to the analysis of authentic ecstasy samples, and the results were consistent with those obtained by the reference UHPLC-DAD method. The fully manual fabrication, cost-effectiveness, and low detection limits of this sensor system, combined with its simplicity, portability, and reliability, suggest its strong potential as an effective and accessible tool for on-site MDMA detection in forensic applications, even in resource-limited settings.
[Display omitted]
•A miniaturized, fully in-laboratory fabricated, low-cost sensor for MDMA detection.•Provides rapid, reliable on-site drug analysis for forensic investigations.•Achieves low LOD, rivaling nanomaterial-modified and commercial electrodes.•Eco-friendly, reagent-minimizing approach for sustainable forensic applications.
Journal Article
Development of a sensitive analytical method for determining 44 pyrrolizidine alkaloids in teas and herbal teas via LC-ESI-MS/MS
by
Gareis, Manfred
,
Kaltner, Florian
,
Rychlik, Michael
in
Alkaloids
,
Analytical chemistry
,
Analytical methods
2019
Pyrrolizidine alkaloids (PA) and PA-N-oxides (PANO) are a large group of secondary plant metabolites comprising more than 660 compounds. Exhibiting geno- and hepatotoxic properties, they are responsible for multiple cases of food and feed poisoning over the last 100 years. For food and feed safety reasons, relevant PA/PANO should be monitored extensively in the main sources of PA/PANO intake. In this study, a sensitive analytical method was developed for detecting a broad range of 44 commercially available PA/PANO compounds, and in-house validation procedures were performed for several (herbal) teas. Various extraction solvents and procedures, as well as solid phase extraction materials for sample clean-up and analyte concentration, were tested to establish the methods’ efficiency and effectiveness. Chromatographic conditions were optimised to obtain the best possible separation of isomers for the 44 PA/PANO analytes. The final method was proven very sensitive and accurate, with detection limits ranging from 0.1 to 7.0 μg/kg and precisions between 0.7 and 16.1%. For 40 of the analytes, the recovery rates ranged from 60.7 to 128.8%. The applicability and trueness of the method were examined by analysing tea samples from a local supermarket and comparing them to a reference material. At least one PA/PANO analyte was detected in 17 of the 18 samples under investigation, and the sum contents of the samples ranged from 0.1 to 47.9 μg/kg. Knowledge of the PA/PANO composition in a sample can be used to indicate the botanical origin of the impurity and, thus, the geographical region of cultivation.
Journal Article
Evaluating the treatment effectiveness of copper-based algaecides on toxic algae Microcystis aeruginosa using single cell-inductively coupled plasma-mass spectrometry
2019
http://npic.orst.edu/ingred/ptype/index.html Single cell-inductively coupled plasma-mass spectrometry (SC-ICP-MS) is an emerging technology. In this work, we have developed a novel SC-ICP-MS method to quantify metal ions in individual cells of a toxic cyanobacterial species, Microcystis aeruginosa (M. aeruginosa), without complicated post-dosing sample preparation, and applied this method to study the treatment effectiveness of copper-based algaecides (cupric sulfate and EarthTec®) on the toxic algae M. aeruginosa. The developed SC-ICP-MS method uses new intrinsic metal element magnesium to determine real transport efficiency and cell concentration. The cell viability and microcystin-LR release by algaecide treatment were studied by flow cytometry and ultra-fast liquid chromatography-tandem mass spectrometry, respectively. The results showed that this novel method was very rapid, highly sensitive (detection limits of intracellular copper and magnesium were 65 ag/cell and 98 ag/cell, respectively), and reproducible (relative standard deviation within 12%). The algaecide effectiveness study further demonstrated that copper in the forms of cupric sulfate and copper-based algaecide EarthTec® successfully diminished M. aeruginosa populations. The higher the copper concentration used to treat the cells, the faster the speeds of copper uptake and cell lysis in the copper concentrations ranged from 0 to 200 μg/L of copper-based algaecide. The cells exhibit obvious heterogeneity in copper uptake. The result suggests that M. aeruginosa cells uptake and cumulate copper followed by cellular lysis and microcystin-LR release. These novel results indicated that though the copper-based algaecides could control this type of harmful algal bloom, further treatment to remove the released algal toxin from the treated water would be needed.
Journal Article
Multiplexed detection of micro-RNAs based on microfluidic multi-color fluorescence droplets
2020
In this work, simple, rapid, and low-cost multiplexed detection of tumor-related micro-RNAs (miRNAs) was achieved based on multi-color fluorescence on a microfluidic droplet chip, which simplified the complexity of light path to a half. A four-T-junction structure was fabricated to form uniform nano-volume droplet arrays with customized contents. Multi-color quantum dots (QDs) used as the fluorescence labels were encapsulated into droplets to develop the multi-path fluorescence detection module. We designed an integrated multiplex fluorescence resonance energy transfer system assisted by multiple QDs (four colors) and one quencher to detect four tumor-related miRNAs (miRNA-20a, miRNA-21, miRNA-155, and miRNA-221). The qualitative analysis of miRNAs was realized by the color identification of QDs, while the quantitative detection of miRNAs was achieved based on the linear relationship between the quenching efficiency of QDs and the concentration of miRNAs. The practicability of the multiplex detection device was further confirmed by detecting four tumor-related miRNAs in real human serum samples. The detection limits of four miRNAs ranged from 35 to 39 pmol/L was achieved without any target amplification. And the linear range was from 0.1 nmol/L to 1 μmol/L using 10 nL detection volume (one droplet) under the detection speed of 320 droplets per minute. The multiple detection system for miRNAs is simple, fast, and low-cost and will be a powerful platform for clinical diagnostic analysis.
Journal Article
An ultrasensitive and disposable electrochemical aptasensor for prostate-specific antigen (PSA) detection in real serum samples
by
Sezgintürk, Mustafa Kemal
,
Özyurt, Canan
,
Uludağ, İnci
in
Analysis
,
Analytical Chemistry
,
Antigens
2023
In this study, we constructed a disposable indium tin oxide polyethylene terephthalate film (ITO-PET)-based electrochemical aptasensor for analyzing prostate-specific antigen (PSA), one of the most important biomarkers of prostate cancer. Because of their clinical importance, building PSA biosensing systems with high sensitivity and stability is essential. However, it still presents significant difficulties, such as low detection limits. We designed a platform to covalently bind the amino-terminated aptamer by modifying the ITO-PET surface with carboxyethylsilanetriol (CTES) to obtain a self-assembled monolayer (SAM). We also evaluated the potential for use in real human serum samples by investigating the optimal operating conditions and analytical performance characteristics of the developed biosensor. The design we present here exhibits excellent precision, with a limit of detection (LOD) as low as 8.74 fg/mL PSA. The broad linear detection range of the biosensor under optimal conditions was determined as 1.0–1500 fg/mL. The dissociation constant (K
d
) for the aptamer was also calculated as 46.28 ± 5.63 nM by evaluating the impedimetric response as a function of PSA concentration. The aptasensor displayed considerable repeatability (1.3% RSD) and reproducibility (7.51% RSD) and good storage stability (98.34% of the initial activity for 8 weeks). Additionally, we demonstrated that the technique we developed was quite efficient in estimating the kinetics of aptamer–analyte interactions by determining the K
d
and single-frequency impedance (SFI) data. In conclusion, we proposed a selective and sensitive biosensor with the potential for clinical application and superior performance in real serum samples.
Graphical abstract
Journal Article
A single analytical method for the determination of 53 legacy and emerging per- and polyfluoroalkyl substances (PFAS) in aqueous matrices
by
Pyke, James
,
Shimeta, Jeff
,
Coggan, Timothy L
in
Analytical methods
,
Anion exchange
,
Anion exchanging
2019
A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below < 20%. In addition to quantifying > 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples.
Journal Article