Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
240 result(s) for "diamide"
Sort by:
Chimeric Investigations into the Diamide Binding Site on the Lepidopteran Ryanodine Receptor
Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human–Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.
Structural basis for diamide modulation of ryanodine receptor
The diamide insecticide class is one of the top-selling insecticides globally. They are used to control a wide range of pests by targeting their ryanodine receptors (RyRs). Here, we report the highest-resolution cryo-electron microscopy (cryo-EM) structure of RyR1 in the open state, in complex with the anthranilic diamide chlorantraniliprole (CHL). The 3.2-Å local resolution map facilitates unambiguous assignment of the CHL binding site. The molecule induces a conformational change by affecting the S4–S5 linker, triggering channel opening. The binding site is further corroborated by mutagenesis data, which reveal how diamide insecticides are selective to the Lepidoptera group of insects over honeybee or mammalian RyRs. Our data reveal that several pests have developed resistance via two mechanisms, steric hindrance and loss of contact. Our results provide a foundation for the development of highly selective pesticides aimed at overcoming resistance and therapeutic molecules to treat human myopathies. Cryo-EM structural work defines binding of the insecticide CHL in the pseudo-voltage-sensor domain of ryanodine receptor RyR that triggers conformational changes leading to channel opening and explains the resistance to CHL by some insects.
Synthesis and Properties of Pentafluorosulfanyl Group (SF5)-Containing Meta-Diamide Insecticides
Herein, we describe novel pentafluorosulfanyl (SF5) group-containing meta-diamide insecticides. For the facile preparation of the SF5-based compounds 4a–d, practical synthetic methods were applied. Among newly synthesized compounds, 3-benzamido-N-(2,6-dimethyl-4-(pentafluoro-λ6-sulfanyl)phenyl)-2-fluorobenzamide 4d showed (i) a high insecticidal activity, (ii) an excellent selectivity to insects, and (iii) good levels of water solubility and log P values. In this study, we demonstrated that the pentafluorosulfanyl moiety could serve as an attractive functionality for the discovery of a new scope of crop-protecting agents.
Ligand Chirality Transfer from Solution State to the Crystalline Self‐Assemblies in Circularly Polarized Luminescence (CPL) Active Lanthanide Systems
The synthesis of a family of chiral and enantiomerically pure pyridyl‐diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid‐state structures of these chiral metallosupramolecular systems are determined using X‐ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL‐LSCM) where the two enantiomers can be clearly distinguished. Enantiopure formation of chiral self‐templated lanthanide supramolecular structures gives rise to CPL when probed both in solution and the solid state demonstrating chirality transfer.
Inhibition of X52 Corrosion in CO 2 -Saturated Brine by a Dialkyl-Diamide from Coffee Bagasse Oil
This work reports the performance of a green corrosion inhibitor with double hydrocarbon chain. The evaluated inhibitor was a dialkyl-diamide from coffee bagasse oil and its electrochemical behavior was evaluated on an API-X52 steel in CO -saturated brine at 60 °C. The electrochemical behavior was determined by measurements of open circuit potential, polarization resistance, and electrochemical impedance spectroscopy. In addition, the thermodynamic parameters of the corrosion process were obtained in the temperature range from 40 °C to 80 °C. Electrochemical studies showed that the inhibitor is capable of suppressing metal dissolution by up to 99% at 25 ppm. On the other hand, the thermodynamic parameters indicate that when adding the inhibitor, there is a strong increase in both Ea and ΔH° values, and that as time increases, they decrease until reaching similar values to those observed in the absence of the inhibitor. Furthermore, ΔS° values tend to become more negative with immersion time because of the formation of a stable film on the metal surface.
The I4790K mutation of the ryanodine receptor is responsible for anthranilic diamide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae)
Insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is a major constraint on the global production of cruciferous crops. For effective management of insecticide resistance, it is necessary to develop a molecular detection tool for predicting insecticide resistance levels based on the mutation frequency of target sites. In this study, a susceptible strain (SHggt) of P. xylostella was subjected to chlorantraniliprole and tetraniliprole selection under laboratory conditions to obtain the CHLSel and TETSel strains, respectively, to determine their resistance development, cross-resistance and mutation frequencies of the P. xylostella ryanodine receptor (PxRyR). In addition, the tetraniliprole resistance and the mutation frequencies of the PxRyR from 7 field populations were evaluated. Continuous selection over 30 generations resulted in resistance ratios (RRs) of 7,073.2-fold and 6,971.0-fold for the CHLSel and TETSel strains, respectively, and thousandfold increases in cross-resistance to unexposed diamides, e.g., cyantraniliprole and flubendiamide, were observed. For the field populations, three out of seven populations have developed more than thousandfold resistance to tetraniliprole. Among the three investigated target site mutations in PxRyR, only I4790K was detected in both laboratory-selected strains. However, 2 mutations, I4790K and G4946E, were detected in field populations. A positive correlation between RRs and K allele frequencies was observed in the laboratory-selected/relaxed strains and field populations of P. xylostella. These results suggest a possible link between the development of anthranilic diamide resistance and the frequency of the PxRyR I4790K mutation, which can be used to develop effective strategies for diamide resistance management in P. xylostella. Graphical Abstract The I4790K mutation plays a key role in anthranilic diamide resistance in P. xylostella. The K allele frequency increased when the resistance ratio (RR) increased but decreased when the selection pressure was removed and when the RR decreased. A positive correlation between resistance ratios and K allele frequencies was observed in the laboratory-selected and relaxed strains and field populations. This correlation could be used for the rapid prediction of diamide resistance levels in field populations of P. xylostella.
Two distinct mechanisms of transcriptional regulation by the redox sensor YodB
For bacteria, cysteine thiol groups in proteins are commonly used as thiol-based switches for redox sensing to activate specific detoxification pathways and restore the redox balance. Among the known thiol-based regulatory systems, the MarR/DUF24 family regulators have been reported to sense and respond to reactive electrophilic species, including diamide, quinones, and aldehydes, with high specificity. Here, we report that the prototypical regulator YodB of the MarR/DUF24 family from Bacillus subtilis uses two distinct pathways to regulate transcription in response to two reactive electrophilic species (diamide or methyl-p-benzoquinone), as revealed by X-ray crystallography, NMR spectroscopy, and biochemical experiments. Diamide induces structural changes in the YodB dimer by promoting the formation of disulfide bonds, whereas methyl-p-benzoquinone allows the YodB dimer to be dissociated from DNA, with little effect on the YodB dimer. The results indicate that B. subtilis may discriminate toxic quinones, such as methyl-p-benzoquinone, from diamide to efficiently manage multiple oxidative signals. These results also provide evidence that different thiol-reactive compounds induce dissimilar conformational changes in the regulator to trigger the separate regulation of target DNA. This specific control of YodB is dependent upon the type of thiol-reactive compound present, is linked to its direct transcriptional activity, and is important for the survival of B. subtilis. This study of B. subtilis YodB also provides a structural basis for the relationship that exists between the ligand-induced conformational changes adopted by the protein and its functional switch.
Broflanilide, a Meta-Diamide Insecticide Seed Treatment for Protection of Wheat and Mortality of Wireworms (Agriotes obscurus) in the Field
Following the deregistration of lindane, several neonicotinoid insecticides have been registered as seed treatments for controlling wireworms in cereal crops. Unlike lindane, which did both, neonicotinoids provide crop protection but do not reduce wireworm populations. Hence populations of various economic species are growing in key wheat production areas of the United States and Canada, and there is a need for novel seed treatments that match the efficacy of lindane. Herein we evaluated broflanilide, a novel GABA-gated Cl- channel allosteric modulator that differs from the cyclodienes (e.g., lindane) in that it binds to a unique site in the GABA receptor. As such, broflanilide confers a new mode of insecticidal action (Group 30 MOA), and is the first meta-diamide insecticide developed. When evaluated in field trials over 7 yr at various rates, broflanilide at 5.0 g [AI]/100 kg wheat seed was as effective at protecting wheat stand from wireworm (Agriotes obscurus) injury as the current industry standard thiamethoxam at 20–30 g [AI]/100 kg seed. In addition, broflanilide at 5.0 g reduced neonate wireworms (produced from eggs laid in established wheat during the growing season) and resident wireworms (in the field at time of planting) by 73.1 and 81.1%, respectively, which is comparable to that reported for the previous industry standard lindane (75.3 and 57.6%, respectively). These studies show that broflanilide at 5.0 g [AI] will provide consistent wheat stand protection (equal to thiamethoxam at 20–30 g [AI]), and A. obscurus wireworm population reduction (equal to lindane at 59 g [AI]), and will do so at far lower dosages per hectare.
Synthesis and Insecticidal Activity of Novel Anthranilic Diamide Insecticides Containing Indane and Its Analogs
Diamide insecticides have always been a hot research topic in the field of pesticides. To further discover new compounds with high activity and safety, indane and its analogs were introduced into chlorantraniliprole, and a battery of chlorfenil derivatives, including indane and its analogs, were designed and prepared for biological testing. Their characterization and verification were carried out through nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). Biological detection showed that all the compounds exhibited good insecticidal activity against Mythimna separata. At 0.8 mg/L, the insecticidal activity of compound 8q against Mythimna separata was 80%, which was slightly better than that of chlorantraniliprole. The results of the structure–activity relationship (SAR) analysis indicated that the indane moiety had a significant effect on insecticidal activity, especially in the R-configuration. The results indicated that chlorantraniliprole derivatives containing indane groups could serve as pilot compounds for the further development of new insecticides.
Design, Synthesis, Fungicidal and Insecticidal Activities of Novel Diamide Compounds Combining Pyrazolyl and Polyfluoro-Substituted Phenyl into Alanine or 2-Aminobutyric Acid Skeletons
Thirty novel diamide compounds combining pyrazolyl and polyfluoro-substituted phenyl groups into alanine or 2-aminobutyric acid skeletons were designed and synthesized with pyflubumide as the lead compound to develop potent and environmentally friendly pesticides. The preliminary bioassay results indicated that the new compounds containing the para-hexa/heptafluoroisopropylphenyl moiety exhibit fungicidal, insecticidal, and acaricidal activities. This is the first time that the para-hexa/heptafluoroisopropylphenyl group is a key fragment of the fungicidal activity of new N-phenyl amide compounds. Most of the target compounds exhibited moderate to good insecticidal activity against Aphis craccivora at a concentration of 400 μg/mL, and some showed moderate activity at a concentration of 200 μg/mL; in particular, compounds I-4, II-a-10, and III-26 displayed higher than 78% lethal rates at 200 μg/mL. Compound II-a-14 exhibited a 61.1% inhibition at 200 μg/mL for Tetranychus cinnabarinus. In addition, some of the target compounds exhibited good insecticidal activities against Plutella xylostella at a concentration of 200 μg/mL; the mortalities of compounds I-1, and II-a-15 were 76.7% and 70.0%, respectively. Preliminary analysis of the structure–activity relationship (SAR) indicated that the insecticidal and acaricidal activities varied significantly depending on the type of substituent and substitution pattern. The fungicidal activity results showed that compounds I-1, II-a-10, II-a-17, and III-26 exhibited good antifungal effects. Enzymatic activity experiments and in vivo efficacy of compound II-a-10 were conducted and discussed.