Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
822 result(s) for "differences in phenology"
Sort by:
Variations in Phenology Identification Strategies across the Mongolian Plateau Using Multiple Data Sources and Methods
Satellite data and algorithms directly affect the accuracy of phenological estimation; therefore, it is necessary to compare and verify existing phenological models to identify the optimal combination of data and algorithms across the Mongolian Plateau (MP). This study used five phenology fitting algorithms—double logistic (DL) and polynomial fitting (Poly) combined with the dynamic threshold method at thresholds of 35% and 50% (DL-G35, DL-G50, Poly-G35, and Poly-G50) and DL combined with the cumulative curvature extreme value method (DL-CUM)—and two data types—the enhanced vegetation index (EVI) and solar-induced chlorophyll fluorescence (SIF)—to identify the start (SOS), peak (POS), and end (EOS) of the growing season in alpine meadow (ALM), desert steppe (DRS), forest vegetation (FV), meadow grassland (MEG), and typical grassland (TYG) of the MP. The optimal methods for identifying the SOS, POS, and EOS of typical grassland areas were Poly-G50 (NSE = 0.12, Pbias = 0.22%), DL-G35/50 (NSE = −0.01, Pbias = −0.06%), and Poly-G35 (NSE = 0.02, Pbias = 0.08%), respectively, based on SIF data. The best methods for identifying the SOS, POS, and EOS of desert steppe areas were Poly-G35 (NSE = −0.27, Pbias = −1.49%), Poly-G35/50 (NSE = −0.58, Pbias = −1.39%), and Poly-G35 (NSE = 0.29, Pbias = −0.61%), respectively, based on EVI data. The data source explained most of the differences in phenological estimates. The accuracy of polynomial fitting was significantly greater than that of the DL method, while all methods were better at identifying SOS and POS than they were at identifying EOS. Our findings can help to facilitate the establishment of a phenological estimation system suitable for the Mongolian Plateau and improve the observation methods of vegetation phenology.
Detecting the Phenological Threshold to Assess the Grassland Restoration in the Nanling Mountain Area of China
The dynamics of vegetation changes and phenology serve as key indicators of interannual changes in vegetation productivity. Monitoring the changes in the Nanling grassland ecosystem using the remote sensing vegetation index is crucial for the rational development, utilization, and protection of these grassland resources. Grasslands in the hilly areas of southern China’s middle and low mountains have a high restoration efficiency due to the favorable combination of water and temperature conditions. However, the dynamic adaptation process of grassland restoration under the combined effects of climate change and human activities remains unclear. The aim of this study was to conduct continuous phenological monitoring of the Nanling grassland ecosystem, and evaluate its seasonal characteristics, trends, and the thresholds for grassland changes. The Normalized Difference Phenology Index (NDPI) values of Nanling Mountains’ grasslands from 2000 to 2021 was calculated using MOD09A1 images from the Google Earth Engine (GEE) platform. The Savitzky–Golay filter and Mann–Kendall test were applied for time series smoothing and trend analysis, and growing seasons were extracted annually using Seasonal Trend Decomposition and LOESS. A segmented regression method was then employed to detect the thresholds for grassland ecosystem restoration based on phenology and grassland cover percentage. The results showed that (1) the NDPI values increased significantly (p < 0.01) across all grassland patches, particularly in the southeast, with a notable rise from 2010 to 2014, and following an eastern to western to central trend mutation sequence. (2) the annual lower and upper NDPI thresholds of the grasslands were 0.005~0.167 and 0.572~0.727, which mainly occurred in January–March and June–September, respectively. (3) Most of the time series in the same periods showed increasing trends, with the growing season length varying from 188 to 247 days. (4) The overall potential productivity of the Nanling grassland improved. (5) The restoration of the mountain grasslands was significantly associated with the grassland coverage and mean NDPI values, with a key threshold identified at a mean NDPI value of 0.5 for 2.1% grassland coverage. This study indicates that to ensure the sustainable development and conservation of grassland ecosystems, targeted management strategies should be implemented, particularly in regions where human factors significantly influence grassland productivity fluctuations.
A Regional Mapping Method for Oilseed Rape Based on HSV Transformation and Spectral Features
This study proposed a colorimetric transformation and spectral features-based oilseed rape extraction algorithm (CSRA) to map oilseed rape at the provincial scale as a first step towards country-scale coverage. Using a stepwise analysis strategy, our method gradually separates vegetation from non-vegetation, crop from non-crop, and oilseed rape from winter wheat. The wide-field view (WFV) images from Chinese Gaofen satellite no. 1 (GF-1) at six continuous flowering stages in Wuxue City, Hubei Province, China are used to extract the unique characteristics of oilseed rape during the flowering period and predict the parameter of the CSRA method. The oilseed rape maps of Hubei Province from 2014 to 2017 are obtained automatically based on the CSRA method using GF-1 WFV images. As a result, the CSRA-derived provincial oilseed rape maps achieved at least 85% overall accuracy of spatial consistency when comparing with local reference oilseed rape maps and lower than 20% absolute error of provincial planting areas when comparing with agricultural census data. The robustness of the CSRA method is also tested on other satellite images including one panchromatic and multispectral image from GF-2 and two RapidEye images. Moreover, the comparison between the CSRA and other previous methods is discussed using the six GF-1 WFV images of Wuxue City, showing the proposed method has better mapping accuracy than other tested methods. These results highlight the potential of our method for accurate extraction and regional mapping capacity for oilseed rape.
Mapping Maize Cultivated Area Combining MODIS EVI Time Series and the Spatial Variations of Phenology over Huanghuaihai Plain
Crop phenology is a significant factor that affects the precision of crop area extraction by using the multi-temporal vegetation indices (VIs) approach. Considering the phenological differences of maize among the different regions, the summer maize cultivated area was estimated by using enhanced vegetation index (EVI) time series images from the Moderate Resolution Imaging Spectroradiometer (MODIS) over the Huanghuaihai Plain in China. By analyzing the temporal shift in summer maize calendars, linear regression equations for simulating the summer maize phenology were obtained. The simulated maize phenology was used to correct the MODIS EVI time series curve of summer maize. Combining the mean absolute distance (MAD) and p-tile algorithm, the cultivated areas of summer maize were distinguished over the Hunaghuaihai Plain. The accuracy of the extraction results in each province was above 85%. Comparing the maize area of two groups from MODIS-estimated and statistical data, the validation results showed that the R2 reached 0.81 at the city level and 0.69 at the county level. It demonstrated that the approach in this study has the ability to effectively map the summer maize area over a large scale and provides a novel idea for estimating the planting area of other crops.
Incorporating variability in simulations of seasonally forced phenology using integral projection models
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual‐based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual‐based phenology models. We demonstrate our approach using a temperature‐dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large‐scale simulations, such as studies of altered pest distributions under climate change. Phenology models are important tools for forecasting the effects of climate change on ecosystems. We derive integral projection models of phenology that are deterministic but which retain the effects of stochastic rate variation and seasonal forcing. The resultant integral projection models are useful for integration in large scale earth system models due to their computational efficiency.
The Optimal Threshold and Vegetation Index Time Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method
Crop phenology is an important parameter for crop growth monitoring, yield prediction, and growth simulation. The dynamic threshold method is widely used to retrieve vegetation phenology from remotely sensed vegetation index time series. However, crop growth is not only driven by natural conditions, but also modified through field management activities. Complicated planting patterns, such as multiple cropping, makes the vegetation index dynamics less symmetrical. These impacts are not considered in current approaches for crop phenology retrieval based on the dynamic threshold method. Thus, this paper aimed to (1) investigate the optimal thresholds for retrieving the start of the season (SOS) and the end of the season (EOS) of different crops, and (2) compare the performances of the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) in retrieving crop phenology with a modified version of the dynamic threshold method. The reference data included SOS and EOS ground observations of three major crop types in 2015 and 2016, which includes rice, wheat, and maize. Results show that (1) the modification of the original method ensures a 100% retrieval rate, which was not guaranteed using the original method. The modified dynamic threshold method is more suitable to retrieve crop SOS/EOS because it considers the asymmetry of crop vegetation index time series. (2) It is inappropriate to retrieve SOS and EOS with the same threshold for all crops, and the commonly used 20% or 50% thresholds are not the optimal thresholds for all crops. (3) For single and late rice, the accuracies of the SOS estimations based on EVI are generally higher compared to those based on NDVI. However, for spring maize and summer maize, results based on NDVI give higher accuracies. In terms of EOS, for early rice and summer maize, estimates based on EVI result in higher accuracies, but, for late rice and winter wheat, results based on NDVI are closer to the ground records.
Recognition and Characterization of Forest Plant Communities through Remote-Sensing NDVI Time Series
Phytosociology is a reference method to classify vegetation that relies on field data. Its classification in hierarchical vegetation units, from plant associations to class level, hierarchically reflects the floristic similarity between different sites on different spatial scales. The development of remotely sensed multispectral platforms as satellites enormously contributes to the detection and mapping of vegetation on all scales. However, the integration between phytosociology and remotely sensed data is rather difficult and little practiced despite being a goal for the modern science of vegetation. In this study, we demonstrate how normalized difference vegetation index (NDVI) time series with functional principal component analysis (FPCA) could support the analyses of phytosociologists. The approach supports the recognition and characterization of forest plant communities identified on the ground by the phytosociological approach by using NDVI time series that encode phenological behaviors. The methodology was evaluated in two study areas of central Italy, and it could characterize and discriminate six different forest plant associations that have similar dominant tree species but distinct specific composition: three dominated by black hornbeam (Ostrya carpinifolia) and three dominated by holm oak (Quercus ilex). The methodology was also able to optimize the ground data collection of unexplored areas (from a phytosociological point of view) by using a phenoclustering approach. The obtained results confirmed that by using remote sensing, it is possible to separate and distinguish plant communities in an objective/instrumental way, thus overcoming the subjectivity intrinsic to the phytosociological method. In particular, FPCA functional components (NDVI seasonalities) were significantly correlated with vegetation abundance data variation (Mantel r = 0.76, p < 0.001).
Assessing the Effects of Time Interpolation of NDVI Composites on Phenology Trend Estimation
The accurate evaluation of shifts in vegetation phenology is essential for understanding of vegetation responses to climate change. Remote-sensing vegetation index (VI) products with multi-day scales have been widely used for phenology trend estimation. VI composites should be interpolated into a daily scale for extracting phenological metrics, which may not fully capture daily vegetation growth, and how this process affects phenology trend estimation remains unclear. In this study, we chose 120 sites over four vegetation types in the mid-high latitudes of the northern hemisphere, and then a Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 daily surface reflectance data was used to generate a daily normalized difference vegetation index (NDVI) dataset in addition to an 8-day and a 16-day NDVI composite datasets from 2001 to 2019. Five different time interpolation methods (piecewise logistic function, asymmetric Gaussian function, polynomial curve function, linear interpolation, and spline interpolation) and three phenology extraction methods were applied to extract data from the start of the growing season and the end of the growing season. We compared the trends estimated from daily NDVI data with those from NDVI composites among (1) different interpolation methods; (2) different vegetation types; and (3) different combinations of time interpolation methods and phenology extraction methods. We also analyzed the differences between the trends estimated from the 8-day and 16-day composite datasets. Our results indicated that none of the interpolation methods had significant effects on trend estimation over all sites, but the discrepancies caused by time interpolation could not be ignored. Among vegetation types with apparent seasonal changes such as deciduous broadleaf forest, time interpolation had significant effects on phenology trend estimation but almost had no significant effects among vegetation types with weak seasonal changes such as evergreen needleleaf forests. In addition, trends that were estimated based on the same interpolation method but different extraction methods were not consistent in showing significant (insignificant) differences, implying that the selection of extraction methods also affected trend estimation. Compared with other vegetation types, there were generally fewer discrepancies between trends estimated from the 8-day and 16-day dataset in evergreen needleleaf forest and open shrubland, which indicated that the dataset with a lower temporal resolution (16-day) can be applied. These findings could be conducive for analyzing the uncertainties of monitoring vegetation phenology changes.
Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States
Urbanization has caused environmental changes, such as urban heat islands (UHIs), that affect terrestrial ecosystems. However, how and to what extent urbanization affects plant phenology remains relatively unexplored. Here, we investigated the changes in the satellite-derived start of season (SOS) and the covariation between SOS and temperature (RT ) in 85 large cities across the conterminous United States for the period 2001–2014. We found that 1) the SOS came significantly earlier (6.1 ± 6.3 d) in 74 cities and RT was significantly weaker (0.03 ± 0.07) in 43 cities when compared with their surrounding rural areas (P < 0.05); 2) the decreased magnitude in RT mainly occurred in cities in relatively cold regions with an annual mean temperature <17.3 °C (e.g., Minnesota, Michigan, and Pennsylvania); and 3) the magnitude of urban−rural difference in both SOS and RT was primarily correlated with the intensity of UHI. Simulations of two phenology models further suggested that more and faster heat accumulation contributed to the earlier SOS, while a decrease in required chilling led to a decline in RT magnitude in urban areas. These findings provide observational evidence of a reduced covariation between temperature and SOS in major US cities, implying the response of spring phenology to warming conditions in nonurban environments may decline in the warming future.
Influences of Seasonal Soil Moisture and Temperature on Vegetation Phenology in the Qilian Mountains
Vegetation phenology is a commonly used indicator of ecosystem responses to climate change and plays a vital role in ecosystem carbon and hydrological cycles. Previous studies have mostly focused on the response of vegetation phenology to temperature and precipitation. Soil moisture plays an important role in maintaining vegetation growth. However, our understanding of the influences of soil moisture dynamics on vegetation phenology is sparse. In this study, using a time series of the normalized difference vegetation index (NDVI) from the moderate resolution imaging spectroradiometer (MODIS) dataset (2001–2020), the start of the growing season (SOS), the end of the growing season (EOS), and the length of the growing season (LOS) in the Qilian Mountains (QLMs) were extracted. The spatiotemporal patterns of vegetation phenology (SOS, EOS, and LOS) were explored. The partial coefficient correlations between the SOS, EOS, and seasonal climatic factors (temperature, precipitation, and soil moisture) were analyzed. The results showed that the variation trends of vegetation phenology were not significant (p > 0.05) from 2001 to 2020, the SOS was advanced by 0.510 d/year, the EOS was delayed by 0.066 d/year, and the LOS was prolonged by 0.580 d/year. The EOS was significantly advanced and the LOS significantly shortened with increasing altitude. The seasonal temperature, precipitation, and soil moisture had spatiotemporal heterogeneous effects on the vegetation phenology. Overall, compared with temperature and soil moisture, precipitation had a weaker influence on the vegetation phenology in the QLMs. For different elevation zones, the temperature and soil moisture influenced the vegetation phenology in most areas of the QLMs, and spring temperature was the key driving factor influencing SOS; the autumn soil moisture and autumn temperature made the largest contributions to the variations in EOS at lower (<3500 m a.s.l.) and higher elevations (>3500 m a.s.l.), respectively. For different vegetation types, the spring temperature was the main factor influencing the SOS for broadleaf forests, needleleaf forests, shrublands, and meadows because of the relative lower soil moisture stress. The autumn soil moisture was the main factor influencing EOS for deserts because of the strong soil moisture stress. Our results demonstrate that the soil moisture strongly influences vegetation phenology, especially at lower elevations and water-limited areas. This study provides a scientific basis for better understanding the response of vegetation phenology to climate change in arid mountainous areas and suggests that the variation in soil moisture should be considered in future studies on the influence of climate warming and environmental effects on the phenology of water-limited areas.