Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,513 result(s) for "dioecy"
Sort by:
A CLAVATA3 -like Gene Acts as a Gynoecium Suppression Function in White Campion
How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic “two-factor” model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively. This widely accepted model was inspired by early genetic work in dioecious white campion (Silene latifolia) that revealed the presence of two sex-determining factors on the Y-chromosome, though the actual genes remained unknown. Here, we report identification and functional analysis of the putative sex-determining gene in S. latifolia, corresponding to the gynoecium suppression factor (GSF). We demonstrate that GSF likely corresponds to a Y-linked CLV3-like gene that is specifically expressed in early male flower buds and encodes the protein that suppresses gynoecium development in S. latifolia. Interestingly, GSFY has a dysfunctional X-linked homolog (GSFX) and their synonymous divergence (dS = 17.9%) is consistent with the age of sex chromosomes in this species. We propose that female development in S. latifolia is controlled via the WUSCHEL-CLAVATA feedback loop, with the X-linked WUSCHEL-like and Y-linked CLV3-like genes, respectively. Evolution of dioecy in the S. latifolia ancestor likely involved inclusion of ancestral GSFY into the nonrecombining region on the nascent Y-chromosome and GSFX loss of function, which resulted in disbalance of the WUSCHEL-CLAVATA feedback loop between the sexes and ensured gynoecium suppression in males.
Phosphorus (P) mobilisation from inorganic and organic P sources depends on P-acquisition strategies in dioecious Populus euphratica
Dioecious species have secondary trait dimorphism in resource acquisition, allocation, and a skewed sex ratio. Yet, it is unclear how their sex-specific nutrient acquisition strategy affects the contributions of inorganic and organic phosphorus (P) soil pools to plant-available P. Here, the contribution of inorganic and organic P sources to available P in soil and sex-specific P acquisition during the whole growing season (from June to October) was assessed in a 20-year-old Populus euphratica plantation via analysing the transformation of soil P pools. Poplar females obtain available inorganic P by increasing specific root length (by 71% compared with males) and releasing organic acids to mobilise P from precipitated P (HCl-P), thus obtaining higher P than males during the mid-growing season (June). The increased mobilisation of moderately precipitated P in the rhizosphere was more significant in females during the whole growing season. During the late-growing season, males showed increased alkaline phosphatase activities (by 25% compared with females) and maintained a higher abundance of arbuscular mycorrhiza fungi to obtain P via higher consumption of organic and residual P (decreased by 68% and 24% from June to October). These changes in P acquisition strategies reflect the temporal niche differentiation: females acquire inorganic P mainly during the beginning and middle of the season, whereas males take up organic P and HCl-P, preferably in the second half of the season. The strategic adjustment of sex-specific P acquisition modulated the transformation of organic and inorganic P sources in soil towards plant-available P, increasing resource niche partitioning between two poplar sexes to maintain P supply.
Establishment of an Agrobacterium‐mediated genetic transformation and CRISPR/Cas9‐mediated targeted mutagenesis in Hemp (Cannabis Sativa L.)
Summary Hemp (Cannabis sativa L.) is an annual and typically dioecious crop. Due to the therapeutic potential for human diseases, phytocannabinoids as a medical therapy is getting more attention recently. Several candidate genes involved in cannabinoid biosynthesis have been elucidated using omics analysis. However, the gene function was not fully validated due to few reports of stable transformation for Cannabis tissues. In this study, we firstly report the successful generation of gene‐edited plants using an Agrobacterium‐mediated transformation method in C. sativa. DMG278 achieved the highest shoot induction rate, which was selected as the model strain for transformation. By overexpressing the cannabis developmental regulator chimera in the embryo hypocotyls of immature grains, the shoot regeneration efficiency was substantially increased. We used CRISPR/Cas9 technology to edit the phytoene desaturase gene and finally generated four edited cannabis seedlings with albino phenotype. Moreover, we propagated the transgenic plants and validated the stable integration of T‐DNA in cannabis genome.
A most complex marriage arrangement
Heterostylous genetic polymorphisms provide paradigmatic systems for investigating adaptation and natural selection. Populations are usually comprised of two (distyly) or three (tristyly) mating types, maintained by negative frequency-dependent selection resulting from disassortative mating. Theory predicts that this mating system should result in equal style-morph ratios (isoplethy) at equilibrium. Here, I review recent advances on heterostyly, focusing on examples challenging stereotypical depictions of the polymorphism and unresolved questions. Comparative analyses indicate multiple origins of heterostyly, often within lineages. Ecological studies demonstrate that structural components of heterostyly are adaptations improving the proficiency of animal-mediated cross-pollination and reducing pollen wastage. Both neutral and selective processes cause deviations from isoplethy in heterostylous populations, and, under some ecological and demographic conditions, cause breakdown of the polymorphism, resulting in either the evolution of autogamy and mixed mating, or transitions to alternative outcrossing systems, including dioecy. Earlier ideas on the genetic architecture of the S-locus supergene governing distyly have recently been overturned by discovery that the dominant S-haplotype is a hemizygous region absent from the s-haplotype. Ecological, phylogenetic and molecular genetic data have validated some features of theoretical models on the selection of the polymorphism. Although heterostyly is the best-understood floral polymorphism in angiosperms, many unanswered questions remain.
Specificity of plant–plant communication for Baccharis salicifolia sexes but not genotypes
Plants are able to adjust their anti-herbivore defenses in response to the volatile organic compounds (VOCs) emitted by herbivore-damaged neighbors, and some of these changes increase resistance against subsequent herbivory. This phenomenon of plant–plant communication is thought to be widespread, but recent investigations have cautioned that it can be context dependent, including variation in the strength of communication based on the identity of plants and their associated herbivores. Here, we performed three greenhouse experiments using multiple male and female genotypes of the dioecious woody shrub Baccharis salicifolia and its specialist aphid Uroleucon macolai to test for specificity of plant–plant communication with respect to plant sex and genotype. Moreover, we evaluated plant sexual dimorphism and genotypic variation in VOC emissions (i.e., the “speaking” side of the interaction) and response of plants to VOC exposure (i.e., the “listening” side of the interaction) in order to identify the chemical mechanisms underlying such specificity. We did not find genotypic specificity of communication; emitter plants damaged by U. macolai significantly reduced subsequent U. macolai performance on receivers, but these effects were indistinguishable for communication within vs. among genotypes. In contrast, we found sex specificity of communication; male emitter plants reduced subsequent U. macolai performance on male and female receiver plants equally, while female emitter plants only did so for female receivers. We found sexual (but not genotypic) dimorphism in speaking but not listening; of the seven compounds induced by U. macolai feeding (speaking), pinocarvone was approximately fivefold greater in female than in male plants, while exposure of plants to pinocarvone emissions (listening) reduced U. macolai performance equally in both male and female plants. Together, our study demonstrates novel evidence for sexually dimorphic specificity of plant–plant communication and the chemical mechanism underlying this effect.
An underutilized orphan tuber crop—Chinese yam : a review
Main conclusion The diversification of food crops can improve our diets and address the effects of climate change, and in this context the orphan crop Chinese yam shows significant potential as a functional food. As the effects of climate change become increasingly visible even in temperate regions, there is an urgent need to diversify our crops in order to address hunger and malnutrition. This has led to the re-evaluation of neglected species such as Chinese yam ( Dioscorea polystachya Turcz.), which has been cultivated for centuries in East Asia as a food crop and as a widely-used ingredient in traditional Chinese medicine. The tubers are rich in nutrients, but also contain bioactive metabolites such as resistant starches, steroidal sapogenins (like diosgenin), the storage protein dioscorin, and mucilage polysaccharides. These health-promoting products can help to prevent cardiovascular disease, diabetes, and disorders of the gut microbiome. Whereas most edible yams are tropical species, Chinese yam could be cultivated widely in Europe and other temperate regions to take advantage of its nutritional and bioactive properties. However, this is a laborious process and agronomic knowledge is fragmented. The underground tubers contain most of the starch, but are vulnerable to breaking and thus difficult to harvest. Breeding to improve tuber shape is complex given the dioecious nature of the species, the mostly vegetative reproduction via bulbils, and the presence of more than 100 chromosomes. Protocols have yet to be established for in vitro cultivation and genetic transformation, which limits the scope of research. This article summarizes the sparse research landscape and evaluates the nutritional and medical applications of Chinese yam. By highlighting the potential of Chinese yam tubers, we aim to encourage the adoption of this orphan crop as a novel functional food.
Sex-related differences in stress tolerance in dioecious plants
Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits—from leaf gas exchange to gene expression—but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat.
relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database
• Premise of the study: Separating sexual function between different individuals carries risks, especially for sedentary organisms. Nevertheless, many land plants have unisexual gametophytes or sporophytes. This study brings together data and theoretical insights from research over the past 20 yr on the occurrence and frequency of plant sexual systems, focusing on the flowering plants.• Methods: A list of genera with dioecious species, along with other information, is made available (http://www.umsl.edu/∼renners/). Frequencies of other sexual systems are tabulated, and data on the genetic regulation, ecological context, and theoretical benefits of dioecy reviewed.• Key results: There are 15600 dioecious angiosperms in 987 genera and 175 families, or 5–6% of the total species (7% of genera, 43% of families), with somewhere between 871 to 5000 independent origins of dioecy. Some 43% of all dioecious angiosperms are in just 34 entirely dioecious clades, arguing against a consistent negative influence of dioecy on diversification. About 31.6% of the dioecious species are wind-pollinated, compared with 5.5–6.4% of nondioecious angiosperms. Also, 1.4% of all angiosperm genera contain dioecious and monoecious species, while 0.4% contain dioecious and gynodioecious species. All remaining angiosperm sexual systems are rare. Chromosomal sex determination is known from 40 species; environmentally modulated sex allocation is common. Few phylogenetic studies have focused on the evolution of dioecy.• Conclusions: The current focus is on the genetic mechanisms underlying unisexual flowers and individuals. Mixed strategies of sexual and vegetative dispersal, together with plants’ sedentary life style, may often favor polygamous systems in which sexually inconstant individuals can persist. Nevertheless, there are huge entirely dioecious clades of tropical woody plants.
Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution
• Soil phosphorus (P) availability and its distribution influence plant growth and productivity, but how they affect the growth dynamics and sex-specific P acquisition strategies of dioecious plant species is poorly understood. • In this study, the impact of soil P availability and its distribution on dioecious Populus cathayana was characterized. P. cathayana males and females were grown under three levels of P supply, and with homogeneous or heterogeneous P distribution. • Females had a greater total root length, specific root length (SRL), biomass and foliar P concentration under high P supply. Under P deficiency, males had a smaller root system than females but a greater exudation of soil acid phosphatase, and a higher colonization rate and arbuscular mycorrhizal hyphal biomass, suggesting a better capacity to mine P and a stronger association with arbuscular mycorrhizal fungi to forage P. Heterogeneous P distribution enhanced growth and root length density (RLD) in females. Female root proliferation in P-rich patches was related to increased foliar P assimilation. Localized P application for increasing P availability did not enhance the biomass accumulation and the morphological plasticity of roots in males, but it raised hyphal biomass. • The findings herein indicate that sex-specific strategies in P acquisition relate to root morphology, root exudation and mycorrhizal symbioses, and they may contribute to sex-specific resource utilization patterns and niche segregation.
Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae
A rare homomorphic diallelic self-incompatibility (DSI) system discovered in Phillyrea angustifolia (family Oleaceae, subtribe Oleinae) can promote the transition from hermaphroditism to androdioecy. If widespread and stable in Oleaceae, DSI may explain the exceptionally high rate of androdioecious species reported in this plant family. Here, we set out to determine whether DSI occurs in another Oleaceae lineage. We tested for DSI in subtribe Fraxininae, a lineage that diverged from subtribe Oleinae c. 40 million yr ago. We explored the compatibility relationships in Fraxinus ornus using 81 hermaphrodites and 25 males from one natural stand and two naturalized populations using intra- and interspecific stigma tests performed on F. ornus and P. angustifolia testers. We uncovered a DSI system with hermaphrodites belonging to one of two self-incompatibility (SI) groups and males compatible with both groups, making for a truly androdioecious reproductive system. The two human-founded populations contained only one of the two SI groups. Our results provide evidence for the evolutionary persistence of DSI. We discuss how its stability over time may have affected transitions to other sexual systems, such as dioecy.