Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,952 result(s) for "dioxido de carbono"
Sort by:
Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change
Since the industrial revolution, anthropogenic activities have increased atmospheric CO2 concentration—one of the major causes of global warming—with a 600 to 700 ppm prediction by the end of this century. Orchards and vineyards are critical sustainable production systems that can minimize emissions and sequester carbon within the atmosphere. Information from different databases (i.e., ScienceDirect, Scopus, SciELO, Google Academic, and ResearchGate) was assessed for this literature review. Generally, elevated CO2 (e-CO2) positively affected fruit trees, such as increased photosynthesis, efficient use of water, growth, and biomass. Therefore, in many cases, the yield and the quality of fruits also increased. With an e-CO2 of 600-750 ppm, most C3 plants will grow 30 % faster. A total of 1,000 ppm of CO2 will be optimal for the photosynthesis of various plant species. Fruit trees typically grown in Colombia, such as citrus, grapevines, strawberry, papaya, and pitaya, would benefit from these positive effects, as e-CO2 alleviates stress due to drought and waterlogging. However, the increased growth of fruit trees due to e-CO2 requires more nutrients and water. Thus, selecting genotypes that benefit from e-CO2 and have high efficiency in using nitrogen and water is very important. Ideally, they must have a high sink strength to avoid the accumulation of carbohydrates in the chloroplast. The authors conclude that there is undoubtedly a “fertilization effect of CO2” on fruit species that increases with the advance of climate change. Still, much research is lacking for fruit species compared to many other crops. Hence, future studies are required to measure the direct effects of atmospheric e-CO2 and its interactions with environmental variables such as rainfall, temperature, soil moisture, and nutrient availability. Las actividades antropogénicas han contribuido a que la concentración de CO2 atmosférico aumente constantemente con una predicción de 600 a 700 ppm para fines de este siglo, siendo una de las mayores causas del calentamiento global. Los huertos frutales y viñedos son importantes sistemas de producción sostenible que pueden minimizar las emisiones y secuestrar carbono de la atmósfera. Para esta revisión de literatura, se evaluó mediante la información obtenida de diferentes bases de datos. Generalmente, el CO2 elevado (e-CO2) genera efectos positivos sobre los frutales en procesos como el aumento de la fotosíntesis, el uso eficiente de agua, el crecimiento y la biomasa. Por lo anterior, en muchos casos, el rendimiento y la calidad de los frutos también incrementaron. Se estima que, con un e-CO2 de 600-750 ppm, la mayoría de las plantas C3 crecerán un 30 % más rápido. Con 1000 ppm las condiciones serán óptimas para la fotosíntesis de varias especies vegetales. Los árboles frutales que también crecen en Colombia como los cítricos, la vid, la fresa, la papaya y la pitaya, se beneficiarían de los efectos positivos mencionados anteriormente, en tanto que el e-CO2 aliviaría los efectos del estrés por sequía y anegamiento. Sin embargo, el mayor crecimiento de los frutales por el e-CO2 exige un mayor suministro de nutrientes y agua, por lo cual es muy importante la selección de genotipos que se benefician del e-CO2 y que presenten un alto uso eficiente de nitrógeno y agua. Así mismo, es deseable que dichas especies posean una alta fuerza vertedero para evitar la acumulación de carbohidratos en el cloroplasto. Esta revisión permite concluir que existe un “efecto fertilizante del CO2” sobre las especies frutales que aumenta con el avance del cambio climático. Sin embargo, existe poca investigación en comparación con muchos otros cultivos agrícolas. Por ello, a futuro se requieren estudios que midan los efectos directos del e-CO2 atmosférico y sus interacciones con variables ambientales, como la lluvia, la temperatura, la humedad del suelo y la disponibilidad de nutrientes.
The impact of carbon dioxide and other greenhouse gases on forest ecosystems Report No 3 of the IUFRO Task Force on Environmental Change
This book, which will be of interest to advanced students and researchers in forestry, tree physiology and ecology, climate change and pollution, includes 11 chapters which review what is known about the impacts of elevated CO and other greenhouse gases on forest ecosystems.
Carbon Capture and Storage
The first book written on Carbon Capture and Storage (CCS) by a major oil-and-gas-producing country, this text provides a thorough overview of the current status of the various elements of the CCS chain and its technology, and how it could become a solution to reduce emissions. It also suggests some key guidelines to be adopted to deploy CCS in a sustainable manner. This book will be useful to a broad group of readers'specifically engineers, geoscientists, economists, and regulators. It will also be useful to high-level strategists and policy makers in energy-producing countries.
Carbon dioxide, populations, and communities
In past decades and in association with a continuing global industrial development, the global atmospheric concentration of carbon dioxide has been rising.Among the many predictions made concerning this disturbing trend is global warming sufficient to melt polar ice-caps thereby dramatically altering existing shorelines.
Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology
Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing, and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon storage and utilisation, covering all the storage options and their environmental impacts. It critically reviews geological, terrestrial and ocean sequestration, including enhanced oil and gas recovery, as well as other advanced concepts such as industrial utilisation, mineral carbonation, biofixation and photocatalytic reduction.Foreword written by Lord Oxburgh, Climate Science PeerComprehensively examines the different methods of storage of carbon dioxide (CO2) and the various concepts for utilisationReviews geological sequestration of CO2, including coverage of reservoir sealing and monitoring and modelling techniques used to verify geological sequestration of CO2
Green carbon dioxide
PROMISING NEW APPROACHES TO RECYCLE CARBON DIOXIDE AND REDUCE EMISSIONS With this book as their guide, readers will learn a variety of new approaches and methods to recycle and reuse carbon dioxide (CO 2 ) in order to produce green fuels and chemicals and, at the same time, minimize CO 2 emissions. The authors demonstrate how to convert CO 2 into a broad range of essential products by using alternative green energy sources, such as solar, wind, and hydro-power as well as sustainable energy sources. Readers will discover that CO 2 can be a driving force for the sustainable future of both the chemical industry and the energy and fuels industry. Green Carbon Dioxide features a team of expert authors, offering perspectives on the latest breakthroughs in CO 2 recycling from Asia, Europe, and North America. The book begins with an introduction to the production of CO 2 -based fuels and chemicals. Next, it covers such topics as: * Transformation of CO 2 to useable products through free-radical-induced reactions * Hydrogenation of CO 2 to liquid fuels * Direct synthesis of organic carbonates from CO 2 and alcohols using heterogeneous oxide catalysts * Electrocatalytic reduction of CO 2 in methanol medium * Fuel production from photocatalytic reduction of CO 2 with water using TiO 2 -based nanocomposites * Use of CO 2 in enhanced oil recovery and carbon capture and sequestration More than 1, 000 references enable readers to explore individual topics in greater depth. Green Carbon Dioxide offers engineers, chemists, and managers in the chemical and energy and fuel industries a remarkable new perspective, demonstrating how CO 2 can play a significant role in the development of a sustainable Earth.
Evaluación de la influencia de la agitación para la producción de biomasa microalgal en un fotobiorreactor panel plano a escala laboratorio
Se evaluó la influencia de la agitación sobre la producción de biomasa en un fotobiorreactor (FBR) panel plano mediante la modificación de los aspersores en el difusor. La evaluación se realizó mediante la elaboración de 3 difusores con diámetros de aspersor diferentes (1, 2 y 4 mm). A través de un análisis de varianza ANOVA y una prueba t, se seleccionaron los diámetros de 1 y 2 mm para ingresar dióxido de carbono (CO2), obteniendo una tasa de crecimiento de 0,37 días -1 y 0,35 días -1, respectivamente. El análisis indicó que a menor diámetro de aspersor en el difusor mayor tasa de crecimiento. Mediante el planteamiento de las ecuaciones de transferencia de masa se verificó que la disminución del tamaño de la burbuja promueve la transferencia entre las fases gas-líquido.  
La fachada ventilada y el confort climático: un instrumento tecnológico para edificaciones de clima cálido en Colombia
O setor imobiliário tem uma grande responsabilidade na contaminação por dióxido de carbono ao planeta, e é a habitação o principal fator desse fato. De modo que a fachada ventilada tenha sido usada amplamente em países do norte e centro da Europa e em menor medida nos Estados Unidos. Essa tecnologia demostrou uma alta eficiência para criar um conforto térmico, ao minimizar o uso de eletrodomésticos como o AVAC e mitigar o impacto ambiental. De fato, sua aplicação no contexto colombiano, sobretudo nas habitações de clima cálido, representa uma excelente possibilidade de melhorar a qualidade das residências de maneira ecossustentável. El sector inmobiliario tiene una gran responsabilidad en la contaminación por dióxido de carbono al planeta, y es la vivienda el principal factor de este hecho. De ahí que la fachada ventilada se haya usado ampliamente en países del norte y centro de Europa y en menor medida en Estados Unidos. Esta tecnología ha demostrado una alta eficiencia para crear un confort climático, al minimizar el uso de electro- domésticos como el HVAC y mitigar el impacto ambiental. De hecho, su aplicación en el contexto colombiano, sobre todo en las viviendas de clima cálido, representa una excelente posibilidad de mejorar la calidad de las residencias de manera eco-sostenible. The real estate sector is responsible for polluting the planet with a large amount of carbon dioxide, and the construction of houses is the principal culprit. As such, the ventilated façade is widely used in northern and central European countries and to a lesser extend in the United States. This technology has shown a high degree of efficiency in maintaining climatic comfort as it minimizes the use of household electrical appliances such as air conditioning units, and it mitigates their environmental impacts. The application of the ventilated façade in Colombia, particularly in homes located in warm climates, is an excellent possibility to improve their qua- lity in an environmentally responsible manner.
Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis review
Our aim in this study was to determine how well phenotypic variation in foliar concentrations of carbon-based secondary compounds (CBSCs) in woody plants can be predicted on the basis of two resource-based hypotheses i.e. the carbon-nutrient balance (CNB) and growth-differentiation balance (GDB) hypotheses. We conducted a meta-analysis of literature data with respect to responses of CBSCs, carbohydrates and nitrogen to six types of environmental manipulations (fertilization with nitrogen or phosphorus, shading, CO2 enrichment, drought stress, ozone exposure). Plant responses to nitrogen fertilization, shading and CO2 enrichment in terms of pooled CBSCs and carbohydrates were consistent with predictions made with the two hypotheses. However, among biosynthetically distinct groups of CBSCs only concentrations of phenylpropanoid-derived compounds changed as predicted; hydrolyzable tannins and terpenoids, in particular, were less responsive. Phosphorus fertilization did not affect concentrations of CBSC or primary metabolites. Plant responses to drought and ozone exposure presumably were driven by plant demands for particular types of compounds (osmolites in the case of drought and antioxidants in the case of ozone exposure) rather than by changes in resource availability. Based on the relative importance of the treatment effects, we propose a hierarchical model of carbon allocation to CBSCs. The model implies that CBSC production is determined by both resource availability and specific demand-side responses. However, these two mechanisms work at different hierarchical levels. The domain of the CNB and GDB hypotheses is at the high hierarchical levels, predicting the total amount of carbon that can be allocated to CBSCs. Predicting altered concentrations of individual CBSCs, i.e. low hierarchy levels, probably demands biosynthetically detailed models which also take into account the history of plant interactions with biotic and abiotic factors.
Olfactory carbon dioxide detection by insects and other animals
Carbon dioxide is a small, relatively inert, but highly volatile gas that not only gives beer its bubbles, but that also acts as one of the primary driving forces of anthropogenic climate change. While beer brewers experiment with the effects of CO2 on flavor and climate scientists are concerned with global changes to ambient CO2 levels that take place over the course of decades, many animal species are keenly aware of changes in CO2 concentration that occur much more rapidly and on a much more local scale. Although imperceptible to us, these small changes in CO2 concentration can indicate imminent danger, signal overcrowding, and point the way to food. Here I review several of these CO2-evoked behaviors and compare the systems insects, nematodes, and vertebrates use to detect environmental CO2.