Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"direct standardization algorithm"
Sort by:
Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images
2023
With the development of hyperspectral imaging technology, the potential for utilizing hyperspectral images to accurately estimate heavy metal concentrations in regional soil has emerged. Currently, soil heavy metal inversion based on laboratory hyperspectral data has demonstrated a commendable level of accuracy. However, satellite images are susceptible to environmental factors such as atmospheric and soil background, presenting a significant challenge in the accurate estimation of soil heavy metal concentrations. In this study, typical chromium (Cr)-contaminated agricultural land in Shaoguan City, Guangdong Province, China, was taken as the study area. Soil sample collection, Cr content determination, laboratory spectral measurements, and hyperspectral satellite image collection were carried out simultaneously. The Zhuhai-1 hyperspectral satellite image spectra were corrected to match laboratory spectra using the direct standardization (DS) algorithm. Then, the corrected spectra were integrated into an optimal model based on laboratory spectral data and sample Cr content data for regional inversion of soil heavy metal Cr content in agricultural land. The results indicated that the combination of standard normal variate (SNV)+ uninformative variable elimination (UVE)+ support vector regression (SVR) model performed best with laboratory spectral data, achieving a high accuracy with an R2 of 0.97, RMSE of 5.87, MAE of 4.72, and RPD of 4.04. The DS algorithm effectively transformed satellite hyperspectral image data into spectra resembling laboratory measurements, mitigating the impact of environmental factors. Therefore, it can be applied for regional inversion of soil heavy metal content. Overall, the study area exhibited a low-risk level of Cr content in the soil, with the majority of Cr content values falling within the range of 36.21–76.23 mg/kg. Higher concentrations were primarily observed in the southeastern part of the study area. This study can provide useful exploration for the promotion and application of Zhuhai-1 image data in the regional inversion of soil heavy metals.
Journal Article
Application of Wavelength Selection Combined with DS Algorithm for Model Transfer between NIR Instruments
2023
This study aims to realize the sharing of near-infrared analysis models of lignin and holocellulose content in pulp wood on two different batches of spectrometers and proposes a combined algorithm of SPA-DS, MCUVE-DS and SiPLS-DS. The Successive Projection Algorithm (SPA), the Monte-Carlo of Uninformative Variable Elimination (MCUVE) and the Synergy Interval Partial Least Squares (SiPLS) algorithms are respectively used to reduce the adverse effects of redundant information in the transmission process of the full spectrum DS algorithm model. These three algorithms can improve model transfer accuracy and efficiency and reduce the manpower and material consumption required for modeling. These results show that the modeling effects of the characteristic wavelengths screened by the SPA, MCUVE and SiPLS algorithms are all greatly improved compared with the full-spectrum modeling, in which the SPA-PLS result in the best prediction with RPDs above 6.5 for both components. The three wavelength selection methods combined with the DS algorithm are used to transfer the models of the two instruments. Among them, the MCUVE combined with the DS algorithm has the best transfer effect. After the model transfer, the RMSEP of lignin is 0.701, and the RMSEP of holocellulose is 0.839, which was improved significantly than the full-spectrum model transfer of 0.759 and 0.918.
Journal Article
Is Standardization Necessary for Sharing of a Large Mid-Infrared Soil Spectral Library?
2020
Recent developments in diffuse reflectance soil spectroscopy have increasingly focused on building and using large soil spectral libraries with the purpose of supporting many activities relevant to monitoring, mapping and managing soil resources. A potential limitation of using a mid-infrared (MIR) spectral library developed by another laboratory is the need to account for inherent differences in the signal strength at each wavelength associated with different instrumental and environmental conditions. Here we apply predictive models built using the USDA National Soil Survey Center–Kellogg Soil Survey Laboratory (NSSC-KSSL) MIR spectral library (n = 56,155) to samples sets of European and US origin scanned on a secondary spectrometer to assess the need for calibration transfer using a piecewise direct standardization (PDS) approach in transforming spectra before predicting carbon cycle relevant soil properties (bulk density, CaCO3, organic carbon, clay and pH). The European soil samples were from the land use/cover area frame statistical survey (LUCAS) database available through the European Soil Data Center (ESDAC), while the US soil samples were from the National Ecological Observatory Network (NEON). Additionally, the performance of the predictive models on PDS transfer spectra was tested against the direct calibration models built using samples scanned on the secondary spectrometer. On independent test sets of European and US origin, PDS improved predictions for most but not all soil properties with memory based learning (MBL) models generally outperforming partial least squares regression and Cubist models. Our study suggests that while good-to-excellent results can be obtained without calibration transfer, for most of the cases presented in this study, PDS was necessary for unbiased predictions. The MBL models also outperformed the direct calibration models for most of the soil properties. For laboratories building new spectroscopy capacity utilizing existing spectral libraries, it appears necessary to develop calibration transfer using PDS or other calibration transfer techniques to obtain the least biased and most precise predictions of different soil properties.
Journal Article
In-process sensing in selective laser melting (SLM) additive manufacturing
2016
Additive manufacturing and specifically metal selective laser melting (SLM) processes are rapidly being industrialized. In order for this technology to see more widespread use as a production modality, especially in heavily regulated industries such as aerospace and medical device manufacturing, there is a need for robust process monitoring and control capabilities to be developed that reduce process variation and ensure quality. The current state of the art of such process monitoring technology is reviewed in this paper. The SLM process itself presents significant challenges as over 50 different process input variables impact the characteristics of the finished part. Understanding the impact of feed powder characteristics remains a challenge. Though many powder characterization techniques have been developed, there is a need for standardization of methods most relevant to additive manufacturing. In-process sensing technologies have primarily focused on monitoring melt pool signatures, either from a Lagrangian reference frame that follows the focal point of the laser or from a fixed Eulerian reference frame. Correlations between process measurements, process parameter settings, and quality metrics to date have been primarily qualitative. Some simple, first-generation process control strategies have also been demonstrated based on these measures. There remains a need for connecting process measurements to process models to enable robust model-based control.
Journal Article
Prediction of Soil Organic Carbon Contents in Tibet Using a Visible Near-Infrared Spectral Library
by
Hu, Bifeng
,
Jia, Xiaolin
,
Xie, Modian
in
Accuracy
,
Agricultural management
,
Agricultural production
2023
Accurate soil organic carbon (SOC) data are very important for management of agricultural production and climate change mitigation. Visible near-infrared diffuse reflectance spectroscopy is an inexpensive, non-destructive, efficient, and reliable technique for monitoring soil properties. Soil spectral libraries can contain large sets of diverse soil data for empirical calibration. In this study, we focused on improving the prediction accuracy of the SOC content at the local field scale in Tibet using field-wet, intact spectra and different spectral libraries. The direct standardization algorithm and piecewise direct standardization algorithm were used to remove the influence of environmental factors from the in situ vis-NIR spectra. These algorithms effectively removed the influence of environment factors from the field-wet, intact spectra. The ratio of performance to deviation values for prediction of the SOC content using the field and laboratory spectra with the local spectral library were 1.57 and 1.98, respectively. The local spectral library models outperformed spiked national spectral library models and had higher ratio of performance to deviation values for shrub meadows, forests, and the total dataset.
Journal Article
Estimation of Soil Organic Matter Based on Spectral Indices Combined with Water Removal Algorithm
2024
Soil moisture strongly interferes with the spectra of soil organic matter (SOM) in the near-infrared region, which reduces the correlation between organic matter and spectra and decreases accuracy in the prediction of SOM. In this study, we explored the feasibility of two types of spectral indices, two- and three-band mixed (SI) and three-band spectral indices (SI3), and two water removal algorithms, direct standardization (DS) and external parameter orthogonalization (EPO), to estimate SOM in wet soils using a total of 192 soil samples at six water content gradients. The estimation accuracies of spectral indices combined with water removal algorithms were better than those of full spectral data combined with water removal algorithms: the prediction accuracies of SI-EPO (R2 = 0.735, RMSEp = 3.4102 g/kg) were higher than those of EPO (R2 = 0.63, RMSEp = 4.1021 g/kg), and those of SI-DS (R2 = 0.70, RMSEp = 3.7085 g/kg) were higher than those of DS (R2 = 0.61, RMSEp = 4.2806 g/kg); SI3-EPO (R2 = 0.752, RMSEp = 3.1344 g/kg) was better than SI-EPO; both EPO and DS effectively mitigated the influence of soil moisture, with EPO demonstrating superior performance in small-sample prediction scenarios. This study introduces a novel approach to counteract the impact of soil moisture on SOM estimation.
Journal Article
Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers
2023
Given the labor-consuming nature of model establishment, model transfer has become a considerable topic in the study of near-infrared (NIR) spectroscopy. Recently, many new algorithms have been proposed for the model transfer of spectra collected by the same types of instruments under different situations. However, in a practical scenario, we need to deal with model transfer between different types of instruments. To expand model applicability, we must develop a method that could transfer spectra acquired from different types of NIR spectrometers with different wavenumbers or absorbance. Therefore, in our study, we propose a new methodology based on improved principal component analysis (IPCA) for calibration transfer between different types of spectrometers. We adopted three datasets for method evaluation, including public pharmaceutical tablets (dataset 1), corn data (dataset 2), and the spectra of eight batches of samples acquired from the plasma ethanol precipitation process collected by FT-NIR and MicroNIR spectrometers (dataset 3). In the calibration transfer for public datasets, IPCA displayed comparable results with the classical calibration transfer method using piecewise direct standardization (PDS), indicating its obvious ability to transfer spectra collected from the same types of instruments. However, in the calibration transfer for dataset 3, our proposed IPCA method achieved a successful bi-transfer between the spectra acquired from the benchtop and micro-instruments with/without wavelength region selection. Furthermore, our proposed method enabled improvements in prediction ability rather than the degradation of the models built with original micro spectra. Therefore, our proposed method has no limitations on the spectrum for model transfer between different types of NIR instruments, thus allowing a wide application range, which could provide a supporting technology for the practical application of NIR spectroscopy.
Journal Article
Automatic Detection of the EEG Spike–Wave Patterns in Epilepsy: Evaluation of the Effects of Transcranial Current Stimulation Therapy
by
Olejarczyk, Elzbieta
,
Sobieszek, Aleksander
,
Assenza, Giovanni
in
Accuracy
,
Adolescent
,
Adult
2024
This study aims to develop a detection method based on morphological features of spike–wave (SW) patterns in the EEG of epilepsy patients and evaluate the effect of cathodal transcranial direct current stimulation (ctDCS) treatment. The proposed method is based on several simple features describing the shape of SW patterns and their synchronous occurrence on at least two EEG channels. High sensitivity, specificity and selectivity values were achieved for each patient and condition. ctDCS resulted in a significant reduction in the number of detected patterns, a decrease in spike duration and amplitude, and an increased spike mobility. The proposed method allows efficient identification of SW patterns regardless of brain condition, although the recruitment of patterns may be modified by ctDCS. This method can be useful in the clinical evaluation of ctDCS effects.
Journal Article
Comparison of Transfer Learning and Established Calibration Transfer Methods for Metal Oxide Semiconductor Gas Sensors
by
Robin, Yannick
,
Schneider, Tizian
,
Amann, Johannes
in
Acetone
,
Air quality
,
Air quality assessments
2023
Although metal oxide semiconductors are a promising candidate for accurate indoor air quality assessments, multiple drawbacks of the gas sensors prevent their widespread use. Examples include poor selectivity, instability over time, and sensor poisoning. Complex calibration methods and advanced operation modes can solve some of those drawbacks. However, this leads to long calibration times, which are unsuitable for mass production. In recent years, multiple attempts to solve calibration transfer have been made with the help of direct standardization, orthogonal signal correction, and many more methods. Besides those, a new promising approach is transfer learning from deep learning. This article will compare different calibration transfer methods, including direct standardization, piecewise direct standardization, transfer learning for deep learning models, and global model building. The machine learning methods to calibrate the initial models for calibration transfer are feature extraction, selection, and regression (established methods) and a custom convolutional neural network TCOCNN. It is shown that transfer learning can outperform the other calibration transfer methods regarding the root mean squared error, especially if the initial model is built with multiple sensors. It was possible to reduce the number of calibration samples by up to 99.3% (from 10 days to approximately 2 h) and still achieve an RMSE for acetone of around 18 ppb (15 ppb with extended individual calibration) if six different sensors were used for building the initial model. Furthermore, it was shown that the other calibration transfer methods (direct standardization and piecewise direct standardization) also work reasonably well for both machine learning approaches, primarily when multiple sensors are used for the initial model.
Journal Article
A comprehensive update on CIDO: the community-based coronavirus infectious disease ontology
2022
Background
The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020.
Results
As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment.
Conclusion
CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.
Journal Article