Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
38,609 result(s) for "disease modeling"
Sort by:
Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis
The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium’s target and hence gain molecular insight into BPD. By profiling the proteomics of BDP–hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The “set-point” for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such “spine-opathies,” human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium’s postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the “lithium response pathway” in BPD governs CRMP2’s phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent—even one whose mechanism-of-action is unknown—might reveal otherwise inscrutable intracellular pathogenic pathways.
Application of Induced Pluripotent Stem Cells (iPSCs) in Hereditary and Viral Diseases of the Liver: Modeling and Treatment
The high prevalence and diversity of liver diseases present a significant problem for modern healthcare. Despite FDA approval of gene therapy drugs to treat hemophilia A and B, available treatment methods for other hereditary liver diseases are mainly limited to the frequently ineffective traditional therapies and surgical intervention. In recent years, significant progress has been made in the treatment of hepatitis C, but hepatitis B is still considered an incurable disease. In this regard, the treatment of hereditary and viral liver diseases using gene or cell therapy remains relevant. This review is focused on the current state of the induced pluripotent stem cells (iPSCs) field in the context of modeling and treatment of hereditary, viral, and some other liver diseases, both ex vivo and in vivo. Here we present a detailed discussion of the possible ways of modeling liver diseases ex vivo using iPSCs (reprogramming of patient somatic cells and genetic engineering (GE) of healthy iPSCs), summarize gene editing (GE) and non-GE approaches for the treatment of liver diseases, and demonstrate that iPSCs and their derivatives are widely used to treat liver diseases in vivo. Taken together, we are presenting a comprehensive analysis of 2D and 3D iPSC-based products in the context of liver diseases, discussing the advantages and disadvantages of this platform, including the comparison with other types of stem cells and animal models. This analysis may help understand not only the potential but also the limitations associated with the use of iPSCs in the context of various types of liver diseases.
Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery
Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.
Using network properties to predict disease dynamics on human contact networks
Recent studies have increasingly turned to graph theory to model more realistic contact structures that characterize disease spread. Because of the computational demands of these methods, many researchers have sought to use measures of network structure to modify analytically tractable differential equation models. Several of these studies have focused on the degree distribution of the contact network as the basis for their modifications. We show that although degree distribution is sufficient to predict disease behaviour on very sparse or very dense human contact networks, for intermediate density networks we must include information on clustering and path length to accurately predict disease behaviour. Using these three metrics, we were able to explain more than 98 per cent of the variation in endemic disease levels in our stochastic simulations.
Bioengineered Efficacy Models of Skin Disease: Advances in the Last 10 Years
Models of skin diseases, such as psoriasis and scleroderma, must accurately recapitulate the complex microenvironment of human skin to provide an efficacious platform for investigation of skin diseases. Skin disease research has been shifting from less complex and less relevant 2D (two-dimensional) models to significantly more relevant 3D (three-dimensional) models. Three-dimensional modeling systems are better able to recapitulate the complex cell–cell and cell–matrix interactions that occur in vivo within skin. Three-dimensional human skin equivalents (HSEs) have emerged as an advantageous tool for the study of skin disease in vitro. These 3D HSEs can be highly complex, containing both epidermal and dermal compartments with integrated adnexal structures. The addition of adnexal structures to 3D HSEs has allowed researchers to gain more insight into the complex pathology of various hereditary and acquired skin diseases. One method of constructing 3D HSEs, 3D bioprinting, has emerged as a versatile and useful tool for generating highly complex HSEs. The development of commercially available 3D bioprinters has allowed researchers to create highly reproducible 3D HSEs with precise integration of multiple adnexal structures. While the field of bioengineered models for study of skin disease has made tremendous progress in the last decade, there are still significant efforts necessary to create truly biomimetic skin disease models. In future studies utilizing 3D HSEs, emphasis must be placed on integrating all adnexal structures relevant to the skin disease under investigation. Thorough investigation of the intricate pathology of skin diseases and the development of effective treatments requires use of highly efficacious models of skin diseases.
EPMA position paper in cancer: current overview and future perspectives
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Population-scale treatment informs solutions for control of environmentally transmitted wildlife disease
Long‐term pathogen control or eradication in wildlife is rare and represents a major challenge in conservation. Control is particularly difficult for environmentally transmitted pathogens, including some of the most conservation‐critical wildlife diseases. We undertook a treatment programme aimed at population‐scale eradication of the environmentally transmitted Sarcoptes scabiei mite (causative agent of sarcoptic mange) during an epizootic in bare‐nosed wombats (Vombatus ursinus). Field trial results were used to parameterize a mechanistic host‐disease model that explicitly described indirect transmission, host behaviour and viable disease intervention methods. Model analysis shows that elimination of S. scabiei in the wild is most sensitive to the success of treatment delivery, and duration of the programme. In addition, we found the frequency that wombats switch burrows was an important positive driver of mite persistence. Synthesis and applications. This research emphasizes the utility of applying model‐guided management techniques in order to achieve practical solutions for controlling disease in the field. We find that control efforts of Sarcoptes scabiei are most successful when simultaneous improvements are made to the current best‐practice protocol, specifically the implementation of better treatment application methods in combination with a longer lasting treatment. These suggested management changes may also reduce the resources and field effort required to implement a successful regime. Furthermore, our approach and findings have applicability to other species affected by S. scabiei (e.g. wolves, red foxes, Spanish ibex and American black bear), as well as other conservation‐critical systems involving environmental transmission (e.g. bat white‐nose syndrome and amphibian chytridiomycosis). This research emphasizes the utility of applying model‐guided management techniques in order to achieve practical solutions for controlling disease in the field. We find that control efforts of Sarcoptes scabiei are most successful when simultaneous improvements are made to the current best‐practice protocol, specifically the implementation of better treatment application methods in combination with a longer lasting treatment. These suggested management changes may also reduce the resources and field effort required to implement a successful regime. Furthermore, our approach and findings have applicability to other species affected by S. scabiei (e.g. wolves, red foxes, Spanish ibex and American black bear), as well as other conservation‐critical systems involving environmental transmission (e.g. bat white‐nose syndrome and amphibian chytridiomycosis).
iPSCs in Modeling and Therapy of Osteoarthritis
Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient’s somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA.
Understanding evidence ecosystems: What influences the production, translation, and use of modeled evidence in Burkina Faso, Nigeria, India, and Kenya?
Background This study sought to document and understand facilitators and barriers to producing, translating, and using modeled evidence in decision-making in Burkina Faso, Nigeria, India, and Kenya. We explored researcher-decision-maker engagement mechanisms as key facilitators of evidence use, with a focus on knowledge brokers and boundary organizations. Methods The study used mixed methods drawing on analysis from key informant interviews and surveys, complemented by a rapid desk review to map modeling activities and actors. The survey was conducted online while the qualitative research entailed in-depth interviews with modelers, knowledge brokers, and decision-makers working in a representative variety of health fields, organizations, and levels of government. This study was approved by Health Media Lab IRB (Institutional Review Board) in the United States and a local IRB in each study country and conducted between September 2021 and June 2022. Results Informants interviewed for this study described a range of factors that facilitate and inhibit the use of modeled evidence in public health decision-making at the individual, organizational, and environmental levels. Key themes included the capacity to produce, translate, and use modeled evidence; the timing and relevance of modeling outputs; the existence of communications channels between modelers and decision-makers; the strength of underlying data systems; the role of sustained funding; and the impact of global crises. Conclusion This study highlights the importance of taking an ecosystem approach to supporting modeling activities, considering individual, organizational, and environmental factors and how different actors and interact to inform the production, translation, and use of modeled evidence. Structured interaction that promotes dialogue, debate, and joint sense making between the producers and users of evidence is critical to informing and influencing the use of evidence in decision-making.
Understanding evidence ecosystems: What influences the production, translation, and use of modeled evidence in Burkina Faso, Nigeria, India, and Kenya?
Background This study sought to document and understand facilitators and barriers to producing, translating, and using modeled evidence in decision-making in Burkina Faso, Nigeria, India, and Kenya. We explored researcher-decision-maker engagement mechanisms as key facilitators of evidence use, with a focus on knowledge brokers and boundary organizations. Methods The study used sequential mixed methods drawing on data collected from surveys and key informant interviews, complemented by a rapid desk review to map modeling activities and actors. The survey was conducted online while the qualitative research entailed in-depth interviews with modelers, knowledge brokers, and decision-makers working in a representative variety of health fields, organizations, and levels of government. This study was approved by Health Media Lab IRB (Institutional Review Board) in the United States and a local IRB in each study country and conducted between September 2021 and June 2022. Results Informants interviewed for this study described a range of factors that facilitate and inhibit the use of modeled evidence in public health decision-making at the individual, organizational, and environmental levels. Key themes included the capacity to produce, translate, and use modeled evidence; the timing and relevance of modeling outputs; the existence of communications channels between modelers and decision-makers; the strength of underlying data systems; the role of sustained funding; and the impact of global crises. Conclusion This study highlights the importance of taking an ecosystem approach to supporting modeling activities, considering individual, organizational, and environmental factors and how different actors and interact to inform the production, translation, and use of modeled evidence. Structured interaction that promotes dialogue, debate, and joint sense making between the producers and users of evidence is critical to informing and influencing the use of evidence in decision-making.