Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,505 result(s) for "dissolution tests"
Sort by:
Characterization of Five Collagenous Biomaterials by SEM Observations, TG-DTA, Collagenase Dissolution Tests and Subcutaneous Implantation Tests
Collagenous biomaterials that are clinically applied in dentistry have dermis-type and membrane-type, both of which are materials for promoting bone and soft tissue formation. The properties of materials supplied with different types could affect their biodegradation periods. The purpose of this study was to characterize five of these products by four different methods: scanning electron microscopy (SEM) observation, thermogravimetry-differential thermal analysis (TG-DTA), 0.01 wt% collagenase dissolution test, and subcutaneous implantation test in vivo. SEM micrographs revealed that both dermis and membranous materials were fibrous and porous. The membranous materials had higher specific derivative thermal gravimetry (DTG) peak temperatures in TG-DTA at around 320 °C, longer collagenase dissolution time ranging from about 300 to 500 min, and more longevity in mice exceeding 9 weeks than the dermis materials. There existed a correlation between the peak temperature in TG-DTA and the collagenase dissolution time. It was considered that higher cross-link degree among collagen fibrils of the membrane-type collagenous materials might account for these phenomena. The experimental protocol and numerical results obtained could be helpful for selection and future development of fibrous collagenous biomaterials in clinical use.
Inhibition of Liquid–Liquid Phase Separation for Breaking the Solubility Barrier of Amorphous Solid Dispersions to Improve Oral Absorption of Naftopidil
Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid–liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests.
Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms
Dissolution tests are used for many purposes in the pharmaceutical industry: in the development of new products, for quality control and, to assist with the determination of bioequivalence. Recent regulatory developments such as the Biopharmaceutics Classification Scheme have highlighted the importance of dissolution in the regulation of post-approval changes and introduced the possibility of substituting dissolution tests for clinical studies in some cases. Therefore, there is a need to develop dissolution tests that better predict the in vivo performance of drug products. This could be achieved if the conditions in the gastrointestinal tract were successfully reconstructed in vitro. The aims of this article are, first, to clarify under which circumstances dissolution testing can be prognostic for in vivo performance, and second, to present physiological data relevant to the design of dissolution tests, particularly with respect to the composition, volume, flow rates and mixing patterns of the fluids in the gastrointestinal tract. Finally, brief comments are made in regard to the composition of in vitro dissolution media as well as the hydrodynamics and duration of the test.
Measurement uncertainty of dissolution test of acetaminophen immediate release tablets using Monte Carlo simulations
Analytical results are widely used to assess batch-by-batch conformity, pharmaceutical equivalence, as well as in the development of drug products. Despite this, few papers describing the measurement uncertainty estimation associated with these results were found in the literature. Here, we described a simple procedure used for estimating measurement uncertainty associated with the dissolution test of acetaminophen tablets. A fractionate factorial design was used to define a mathematical model that explains the amount of acetaminophen dissolved (%) as a function of time of dissolution (from 20 to 40 minutes), volume of dissolution media (from 800 to 1000 mL), pH of dissolution media (from 2.0 to 6.8), and rotation speed (from 40 to 60 rpm). Using Monte Carlo simulations, we estimated measurement uncertainty for dissolution test of acetaminophen tablets (95.2 ± 1.0%), with a 95% confidence level. Rotation speed was the most important source of uncertainty, contributing about 96.2% of overall uncertainty. Finally, it is important to note that the uncertainty calculated in this paper reflects the expected uncertainty to the dissolution test, and does not consider variations in the content of acetaminophen.
Time-Lapse Macro Imaging with Dissolution Tests for Exploring the Interrelationship Between Disintegration and Dissolution Behaviors of Solid Dosages
ObjectiveThis study aims to establish a Flow-through Visualization Dissolution System (FVDS) that combines time-lapse macro-imaging and a flow-through cell to simultaneously elucidate dissolution and disintegration profiles.MethodsThree cefaclor extended-release tablets (CEC-1, CEC-2, CEC-3) from different manufacturers were subjected to dissolution tests using both the US Pharmacopeia basket method and the FVDS method. Two dissolution media plans were implemented in FVDS: i) Plan I involved dissolution in pH1.0 medium for 12 h; ii) Plan II initiated dissolution in pH1.0 medium for 1 h, followed by pH6.8 phosphate buffer for 11 h. The resulting dissolution data were fitted using classic mathematical models. Pixel information was further extracted from images obtained using FVDS and plotted over time.ResultsThe basket method showed the cumulative dissolution of all three tablets in pH1.0, pH4.0 and water reached 80% within 6 h, but remained below 60% in the pH6.8 medium. The f2 values indicated CEC-2 was similar to CEC-1 in the pH4.0 medium, pH6.8 medium and water. Using FVDS with medium plan II, the cumulative dissolution of CEC-1 and CEC-2 reached about 80% showing similarity, while no similarity was observed between CEC-3 and CEC-1. The f2 factor of the percentage area change profiles also showed consistent results in the dissolution profile of medium plan II. However, FVDS with medium plan I cannot distinguish between CEC-2 and CEC-3.ConclusionFVDS offers an alternative to traditional dissolution methods by integrating imaging analysis as a complementary tool to disintegration and dissolution testing methods.
Synthesis and Characterization of Carvedilol-Etched Halloysite Nanotubes Composites with Enhanced Drug Solubility and Dissolution Rate
Carvedilol is a poorly water-soluble drug employed to treat chronic heart failure. In this study, we synthesize new carvedilol-etched halloysite nanotubes (HNTs) composites to enhance solubility and dissolution rate. The simple and feasible impregnation method is used for carvedilol loading (30–37% weight). Both the etched HNTs (acidic HCl and H2SO4 and alkaline NaOH treatments) and the carvedilol-loaded samples are characterized by various techniques (XRPD, FT-IR, solid-state NMR, SEM, TEM, DSC, and specific surface area). The etching and loading processes do not induce structural changes. The drug and carrier particles are in intimate contact and their morphology is preserved, as demonstrated by TEM images. The 27Al and 13C solid-state NMR and FT-IR findings show that carvedilol interactions involve the external siloxane surface, especially the aliphatic carbons, the functional groups, and, by inductive effect, the adjacent aromatic carbons. All the carvedilol–halloysite composites display enhanced dissolution rate, wettability, and solubility, as compared to carvedilol. The best performances are obtained for the carvedilol–halloysite system based on HNTs etched with HCl 8M, which exhibits the highest value of specific surface area (91 m2 g−1). The composites make the drug dissolution independent of the environmental conditions of the gastrointestinal tract and its absorption less variable, more predictable, and independent from the pH of the medium.
Design of Etched- and Functionalized-Halloysite/Meloxicam Hybrids: A Tool for Enhancing Drug Solubility and Dissolution Rate
The study focuses on the synthesis and characterization of Meloxicam–halloysite nanotube (HNT) composites as a viable approach to enhance the solubility and dissolution rate of meloxicam, a poorly water-soluble drug (BCS class II). Meloxicam is loaded on commercial and modified halloysite (acidic and alkaline etching, or APTES and chitosan functionalization) via a solution method. Several techniques (XRPD, FT-IR, 13C solid-state NMR, SEM, EDS, TEM, DSC, TGA) are applied to characterize both HNTs and meloxicam–HNT systems. In all the investigated drug–clay hybrids, a high meloxicam loading of about 40 wt% is detected. The halloysite modification processes and the drug loading do not alter the structure and morphology of both meloxicam and halloysite nanotubes, which are in intimate contact in the composites. Weak drug–clay and drug-functionalizing agent interactions occur, involving the meloxicam amidic functional group. All the meloxicam–halloysite composites exhibit enhanced dissolution rates, as compared to meloxicam. The meloxicam–halloysite composite, functionalized with chitosan, showed the best performance both in water and in buffer at pH 7.5. The drug is completely released in 4–5 h in water and in less than 1 h in phosphate buffer. Notably, an equilibrium solubility of 13.7 ± 4.2 mg/L in distilled water at 21 °C is detected, and wettability dramatically increases, compared to the raw meloxicam. These promising results can be explained by the chitosan grafting on the outer surface of halloysite nanotubes, which provides increased specific surface area (100 m2/g) disposable for drug adsorption/desorption.
New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids
In the pharmaceutical market, the need to find effective systems for the efficient release of poorly bioavailable drugs is a forefront topic. The inorganic–organic hybrid materials have been recognized as one of the most promising systems. In this paper, we developed new Hydroxypapatite@Furosemide hybrids with improved dissolution rates in different media with respect to the drug alone. The hybrids formation was demonstrated by SEM/EDS measurements (showing homogeneous distribution of the elements) and FT-IR spectroscopy. The drug was adsorbed onto hydroxyapatite surfaces in amorphous form, as demonstrated by XRPD and its thermal stability was improved due to the absence, in the hybrids, of melting and decomposition peaks typical of the drug. The Sr substitution on Ca sites in hydroxyapatite allows increasing the surface area and pore volume, foreseeing a high capacity of drug loading. The dissolution tests of the hybrid compounds show dissolution rates much faster than the drug alone in different fluids, and also their solubility and wetting ability is improved in comparison to furosemide alone.
Development and Application of Carbonate Dissolution Test Equipment under Thermal–Hydraulic–Chemical Coupling Condition
The latest continuous flow micro reaction technology was adopted to independently develop carbonate rock dissolution test equipment. Carbonate rock dissolution tests were conducted under different temperatures, flow rates, and dynamic water pressure conditions to study the dissolution process of carbonate rocks under the coupling of heat-water-chemistry. The dissolution effect and development law of carbonate rocks were explored by quantitatively studying carbonate rock dissolution rate and chemical composition of karst water. The results showed that the self-designed dissolution test equipment has obvious advantages. After dissolution, carbonate rock specimens were damaged to varying degrees. The dissolution rate was proportional to water velocity and hydrodynamic pressure, with the velocity effect being greater than the hydrodynamic pressure effect. The pH value, conductivity, and Ca2+ ion content of the reaction solution gradually increased after dissolution. The development and application of the equipment have proved that, at low dynamic water pressures (2 MPa), the water flow velocity effect on the dissolution velocity was 1.5 times that when the dynamic water pressure was high (6 MPa); at a low water flow velocity of 15 mL/min, the dynamic water pressure effect on the dissolution velocity was three times that when the water flow velocity was high (75 mL/min). The development process is gradually becoming strong and stable. Its research has important theoretical significance and engineering application value to provide technical means and guarantee for the early identification, karst development, and safety evaluation of karst geological disasters.