Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,885
result(s) for
"distance estimation"
Sort by:
Effective neural network-based node localisation scheme for wireless sensor networks
2014
Wireless sensor networks usually obtain the location of an unknown node by measuring the distance between the unknown node and its neighbouring anchors. To enhance both localisation accuracy and localisation success rates, the authors introduce a new neural network-based node localisation scheme. The new scheme is distinct because it can make the trained network model completely relevant to the topology via online training and correlated topology-trained data and therefore attain more efficient application of the neural networks and more accurate inter-node distance estimation. It is also distinct in adopting both received signal strength indication and hop counts to estimate the inter-node distances, to improve the distance estimation accuracy as well as localisation accuracy at no additional cost. Experimental evaluation is conducted to measure the performance of the proposed scheme and other artificial intelligent-based node localisation schemes. The results show that, at reasonable cost, the new scheme constantly produces higher localisation success rates and smaller localisation errors than other schemes.
Journal Article
Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter
by
Fernández, Pedro
,
Infante, Arturo
,
Pompa-Chacón, Yamilet
in
camera-to-emitter distance estimation
,
Cameras
,
computer vision
2013
Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED). They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m.
Journal Article
Vibration source classification and propagation distance estimation system based on spectrogram and KELM
2019
Earth surface vibration signals source classification and propagation distance estimation attract increasing attention in recent years due to the wide applications in many areas. In this study, the authors develop a hybrid classification and propagation distance estimation algorithm for general earth surface vibration sources. The spectrogram (SPEC) feature characterising the energy distribution of vibrations is first developed for signal representation in this study. The kernel-based extreme learning machine (KELM) algorithm is then adopted for the vibration source classification and propagation distance estimation. Comparing with the conventional approaches, the proposed KELM + SPEC algorithm is not only effective in characterising the time- and frequency-domain features of vibrations, but also superior in accuracy and efficiency. To test the effectiveness of the proposed KELM + SPEC algorithm, experiments on real collected vibration signals are presented, where simulations on both periodic and aperiodic vibrations are carried out in the study. Comparisons to various existing vibration signal extraction and classification algorithms are provided to show the advantages of the proposed KELM + SPEC algorithm.
Journal Article
Numerical Realization of Minimum Distance Estimation for Poisson Processes
2024
The statistical inference for minimum distance parametric estimation has been well developed in recent years, concerning the asymptotic behaviors of the minimum L 1 -distance estimator, minimum L 2 -distance estimator and minimum Skorohod-distance estimator. The question is how to realize the numerical solution of the minimum Skorohod-distance estimator, due to its complicated analytic structure. This paper aims to discuss the minimum distance estimation problem for Poisson processes. The main contribution includes the consistency and the approximate numerical solution of the minimum Skorohod-distance estimator, accompanied with the study of the minimum L 1 -distance estimator and minimum L 2 -distance estimator. In the numerical examples, three estimators exhibit the consistency trend. The mean square error of the minimum L 1 -distance estimator and minimum L 2 -distance estimator are comparable to, or superior to the minimum Skorohod-distance estimator in the regular cases, while the results are reversed in the change-point case. The bias of the minimum Skorohod-distance estimator is either superior or comparable to the others in the regular cases.
Journal Article
Dist-YOLO: Fast Object Detection with Distance Estimation
2022
We present a scheme of how YOLO can be improved in order to predict the absolute distance of objects using only information from a monocular camera. It is fully integrated into the original architecture by extending the prediction vectors, sharing the backbone’s weights with the bounding box regressor, and updating the original loss function by a part responsible for distance estimation. We designed two ways of handling the distance, class-agnostic and class-aware, proving class-agnostic creates smaller prediction vectors than class-aware and achieves better results. We demonstrate that the subtasks of object detection and distance measurement are in synergy, resulting in the increase of the precision of the original bounding box functionality. We show that using the KITTI dataset, the proposed scheme yields a mean relative error of 11% considering all eight classes and the distance range within [0, 150] m, which makes the solution highly competitive with existing approaches. Finally, we show that the inference speed is identical to the unmodified YOLO, 45 frames per second.
Journal Article
Drone Detection and Tracking Using RF Identification Signals
2023
The market for unmanned aerial systems (UASs) has grown considerably worldwide, but their ability to transmit sensitive information poses a threat to public safety. To counter these threats, authorities, and anti-drone organizations are ensuring that UASs comply with regulations, focusing on strategies to mitigate the risks associated with malicious drones. This study presents a technique for detecting drone models using identification (ID) tags in radio frequency (RF) signals, enabling the extraction of real-time telemetry data through the decoding of Drone ID packets. The system, implemented with a development board, facilitates efficient drone tracking. The results of a measurement campaign performance evaluation include maximum detection distances of 1.3 km for the Mavic Air, 1.5 km for the Mavic 3, and 3.7 km for the Mavic 2 Pro. The system accurately estimates a drone’s 2D position, altitude, and speed in real time. Thanks to the decoding of telemetry packets, the system demonstrates promising accuracy, with worst-case distances between estimated and actual drone positions of 35 m for the Mavic 2 Pro, 17 m for the Mavic Air, and 15 m for the Mavic 3. In addition, there is a relative error of 14% for altitude measurements and 7% for speed measurements. The reaction times calculated to secure a vulnerable site within a 200 m radius are 1.83 min (Mavic Air), 1.03 min (Mavic 3), and 2.92 min (Mavic 2 Pro). This system is proving effective in addressing emerging concerns about drone-related threats, helping to improve public safety and security.
Journal Article
Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method
by
Kumar, Sudhir
,
Tamura, Koichiro
,
Nei, Masatoshi
in
Biological Sciences
,
Computer Simulation
,
Datasets
2004
Current efforts to reconstruct the tree of life and histories of multigene families demand the inference of phylogenies consisting of thousands of gene sequences. However, for such large data sets even a moderate exploration of the tree space needed to identify the optimal tree is virtually impossible. For these cases the neighbor-joining (NJ) method is frequently used because of its demonstrated accuracy for smaller data sets and its computational speed. As data sets grow, however, the fraction of the tree space examined by the NJ algorithm becomes minuscule. Here, we report the results of our computer simulation for examining the accuracy of NJ trees for inferring very large phylogenies. First we present a likelihood method for the simultaneous estimation of all pairwise distances by using biologically realistic models of nucleotide substitution. Use of this method corrects up to 60% of NJ tree errors. Our simulation results show that the accuracy of NJ trees decline only by ≈5% when the number of sequences used increases from 32 to 4,096 (128 times) even in the presence of extensive variation in the evolutionary rate among lineages or significant biases in the nucleotide composition and transition/transversion ratio. Our results encourage the use of complex models of nucleotide substitution for estimating evolutionary distances and hint at bright prospects for the application of the NJ and related methods in inferring large phylogenies.
Journal Article
DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment in COVID-19 Pandemic
2020
Social distancing is a recommended solution by the World Health Organisation (WHO) to minimise the spread of COVID-19 in public places. The majority of governments and national health authorities have set the 2-m physical distancing as a mandatory safety measure in shopping centres, schools and other covered areas. In this research, we develop a hybrid Computer Vision and YOLOv4-based Deep Neural Network (DNN) model for automated people detection in the crowd in indoor and outdoor environments using common CCTV security cameras. The proposed DNN model in combination with an adapted inverse perspective mapping (IPM) technique and SORT tracking algorithm leads to a robust people detection and social distancing monitoring. The model has been trained against two most comprehensive datasets by the time of the research—the Microsoft Common Objects in Context (MS COCO) and Google Open Image datasets. The system has been evaluated against the Oxford Town Centre dataset (including 150,000 instances of people detection) with superior performance compared to three state-of-the-art methods. The evaluation has been conducted in challenging conditions, including occlusion, partial visibility, and under lighting variations with the mean average precision of 99.8% and the real-time speed of 24.1 fps. We also provide an online infection risk assessment scheme by statistical analysis of the spatio-temporal data from people’s moving trajectories and the rate of social distancing violations. We identify high-risk zones with the highest possibility of virus spread and infection. This may help authorities to redesign the layout of a public place or to take precaution actions to mitigate high-risk zones. The developed model is a generic and accurate people detection and tracking solution that can be applied in many other fields such as autonomous vehicles, human action recognition, anomaly detection, sports, crowd analysis, or any other research areas where the human detection is in the centre of attention.
Journal Article
Deep Learning-Based Object Detection, Localisation and Tracking for Smart Wheelchair Healthcare Mobility
by
Rossi, Romain
,
Kefi, Naceur
,
Ertaud, Jean-Yves
in
Algorithms
,
Deep Learning
,
Disabled Persons
2020
This paper deals with the development of an Advanced Driver Assistance System (ADAS) for a smart electric wheelchair in order to improve the autonomy of disabled people. Our use case, built from a formal clinical study, is based on the detection, depth estimation, localization and tracking of objects in wheelchair’s indoor environment, namely: door and door handles. The aim of this work is to provide a perception layer to the wheelchair, enabling this way the detection of these keypoints in its immediate surrounding, and constructing of a short lifespan semantic map. Firstly, we present an adaptation of the YOLOv3 object detection algorithm to our use case. Then, we present our depth estimation approach using an Intel RealSense camera. Finally, as a third and last step of our approach, we present our 3D object tracking approach based on the SORT algorithm. In order to validate all the developments, we have carried out different experiments in a controlled indoor environment. Detection, distance estimation and object tracking are experimented using our own dataset, which includes doors and door handles.
Journal Article
Deep Learning for Real-Time 3D Multi-Object Detection, Localisation, and Tracking: Application to Smart Mobility
2020
In core computer vision tasks, we have witnessed significant advances in object detection, localisation and tracking. However, there are currently no methods to detect, localize and track objects in road environments, and taking into account real-time constraints. In this paper, our objective is to develop a deep learning multi object detection and tracking technique applied to road smart mobility. Firstly, we propose an effective detector-based on YOLOv3 which we adapt to our context. Subsequently, to localize successfully the detected objects, we put forward an adaptive method aiming to extract 3D information, i.e., depth maps. To do so, a comparative study is carried out taking into account two approaches: Monodepth2 for monocular vision and MADNEt for stereoscopic vision. These approaches are then evaluated over datasets containing depth information in order to discern the best solution that performs better in real-time conditions. Object tracking is necessary in order to mitigate the risks of collisions. Unlike traditional tracking approaches which require target initialization beforehand, our approach consists of using information from object detection and distance estimation to initialize targets and to track them later. Expressly, we propose here to improve SORT approach for 3D object tracking. We introduce an extended Kalman filter to better estimate the position of objects. Extensive experiments carried out on KITTI dataset prove that our proposal outperforms state-of-the-art approches.
Journal Article