Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
211
result(s) for
"distributed acoustic sensing"
Sort by:
Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing
by
Lindsey, Nathaniel J.
,
Dawe, T. Craig
,
Ajo-Franklin, Jonathan B.
in
Acoustic noise
,
Acoustic waves
,
Acoustics
2019
Distributed fiber-optic sensing technology coupled to existing subsea cables (dark fiber) allows observation of ocean and solid earth phenomena. We used an optical fiber from the cable supporting the Monterey Accelerated Research System during a 4-day maintenance period with a distributed acoustic sensing (DAS) instrument operating onshore, creating a ∼10,000-component, 20-kilometer-long seismic array. Recordings of a minor earthquake wavefield identified multiple submarine fault zones. Ambient noise was dominated by shoaling ocean surface waves but also contained observations of in situ secondary microseism generation, post–low-tide bores, storm-induced sediment transport, infragravity waves, and breaking internal waves. DAS amplitudes in the microseism band tracked sea-state dynamics during a storm cycle in the northern Pacific. These observations highlight this method’s potential for marine geophysics.
Journal Article
Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective
by
Turov, Artem T.
,
Wuilpart, Marc
,
Konstantinov, Yuri A.
in
Acoustics
,
Composite materials
,
distributed acoustic sensing (DAS)
2022
This work presents a detailed review of the development of distributed acoustic sensors (DAS) and their newest scientific applications. It covers most areas of human activities, such as the engineering, material, and humanitarian sciences, geophysics, culture, biology, and applied mechanics. It also provides the theoretical basis for most well-known DAS techniques and unveils the features that characterize each particular group of applications. After providing a summary of research achievements, the paper develops an initial perspective of the future work and determines the most promising DAS technologies that should be improved.
Journal Article
Detection of Leak-Induced Pipeline Vibrations Using Fiber—Optic Distributed Acoustic Sensing
by
Schmidt, Dirk
,
Stajanca, Pavol
,
Seifert, Stefan
in
Acoustics
,
distributed acoustic sensing
,
distributed vibration sensing
2018
In the presented work, the potential of fiber-optic distributed acoustic sensing (DAS) for detection of small gas pipeline leaks (<1%) is investigated. Helical wrapping of the sensing fiber directly around the pipeline is used to increase the system sensitivity for detection of weak leak-induced vibrations. DAS measurements are supplemented with reference accelerometer data to facilitate analysis and interpretation of recorded vibration signals. The results reveal that a DAS system using direct fiber application approach is capable of detecting pipeline natural vibrations excited by the broadband noise generated by the leaking medium. In the performed experiment, pipeline vibration modes with acceleration magnitudes down to single μg were detected. Simple leak detection approach based on spectral integration of time-averaged DAS signals in frequency domain was proposed. Potential benefits and limitations of the presented monitoring approach were discussed with respect to its practical applicability. We demonstrated that the approached is potentially capable of detection and localization of gas pipeline leaks with leak rates down to 0.1% of the pipeline flow volume and might be of interest for monitoring of short- and medium-length gas pipelines.
Journal Article
Distributed Acoustic Sensing for Monitoring Linear Infrastructures: Current Status and Trends
2022
Linear infrastructures, such as railways, tunnels, and pipelines, play essential roles in economic and social development worldwide. However, under the influence of geohazards, earthquakes, and human activities, linear infrastructures face the potential risk of damage and may not function properly. Current monitoring systems for linear infrastructures are mainly based on non-contact detection (InSAR, UAV, GNSS, etc.) and geotechnical instrumentation (extensometers, inclinometers, tiltmeters, piezometers, etc.) techniques. Regarding monitoring sensitivity, frequency, and coverage, most of these methods have some shortcomings, which make it difficult to perform the accurate, real-time, and comprehensive monitoring of linear infrastructures. Distributed acoustic sensing (DAS) is an emerging sensing technology that has rapidly developed in recent years. Due to its unique advantages in long-distance, high-density, and real-time monitoring, DAS arrays have shown broad application prospects in many fields, such as oil and gas exploration, seismic observation, and subsurface imaging. In the field of linear infrastructure monitoring, DAS has gradually attracted the attention of researchers and practitioners. In this paper, recent research and the development activities of applying DAS to monitor different types of linear infrastructures are critically reviewed. The sensing principles are briefly introduced, as well as the main features. This is followed by a summary of recent case studies and some critical problems associated with the implementation of DAS monitoring systems in the field. Finally, the challenges and future trends of this research area are presented.
Journal Article
Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR Technology
by
Costa, Luis
,
F. Martins, Hugo
,
R. Fernández-Ruiz, María
in
chirped-pulse
,
distributed acoustic sensing
,
Lasers
2019
In 2016, a novel interrogation technique for phase-sensitive (Φ)OTDR was mathematically formalized and experimentally demonstrated, based on the use of a chirped-pulse as a probe, in an otherwise direct-detection-based standard setup: chirped-pulse (CP-)ΦOTDR. Despite its short lifetime, this methodology has now become a reference for distributed acoustic sensing (DAS) due to its valuable advantages with respect to conventional (i.e., coherent-detection or frequency sweeping-based) interrogation strategies. Presenting intrinsic immunity to fading points and using direct detection, CP-ΦOTDR presents reliable high sensitivity measurements while keeping the cost and complexity of the setup bounded. Numerous technique analyses and contributions to study/improve its performance have been recently published, leading to a solid, highly competitive and extraordinarily simple method for distributed fibre sensing. The interesting sensing features achieved in these last years CP-ΦOTDR have motivated the use of this technology in diverse applications, such as seismology or civil engineering (monitoring of pipelines, train rails, etc.). Besides, new areas of application of this distributed sensor have been explored, based on distributed chemical (refractive index) and temperature-based transducer sensors. In this review, the principle of operation of CP-ΦOTDR is revisited, highlighting the particular performance characteristics of the technique and offering a comparison with alternative distributed sensing methods (with focus on coherent-detection-based ΦOTDR). The sensor is also characterized for operation in up to 100 km with a low cost-setup, showing performances close to the attainable limits for a given set of signal parameters [≈tens-hundreds of pe/sqrt(Hz)]. The areas of application of this sensing technology employed so far are briefly outlined in order to frame the technology.
Journal Article
Research Progress in Distributed Acoustic Sensing Techniques
by
Du, Yuankai
,
Zhao, Yanjie
,
Wang, Yingying
in
Acoustics
,
distributed acoustic sensing
,
Earthquakes
2022
Distributed acoustic sensing techniques based on Rayleigh scattering have been widely used in many applications due to their unique advantages, such as long-distance detection, high spatial resolution, and wide sensing bandwidth. In this paper, we provide a review of the recent advancements in distributed acoustic sensing techniques. The research progress and operation principles are systematically reviewed. The pivotal technologies and solutions applied to distributed acoustic sensing are introduced in terms of polarization fading, coherent fading, spatial resolution, frequency response, signal-to-noise ratio, and sensing distance. The applications of the distributed acoustic sensing are covered, including perimeter security, earthquake monitoring, energy exploration, underwater positioning, and railway monitoring. The potential developments of the distributed acoustic sensing techniques are also discussed.
Journal Article
Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis
by
Münzenberger, Sven
,
Kowarik, Stefan
,
Hussels, Maria-Teresa
in
Acoustics
,
Algorithms
,
artificial neural networks
2020
Distributed acoustic sensing (DAS) over tens of kilometers of fiber optic cables is well-suited for monitoring extended railway infrastructures. As DAS produces large, noisy datasets, it is important to optimize algorithms for precise tracking of train position, speed, and the number of train cars. The purpose of this study is to compare different data analysis strategies and the resulting parameter uncertainties. We present data of an ICE 4 train of the Deutsche Bahn AG, which was recorded with a commercial DAS system. We localize the train signal in the data either along the temporal or spatial direction, and a similar velocity standard deviation of less than 5 km/h for a train moving at 160 km/h is found for both analysis methods. The data can be further enhanced by peak finding as well as faster and more flexible neural network algorithms. Then, individual noise peaks due to bogie clusters become visible and individual train cars can be counted. From the time between bogie signals, the velocity can also be determined with a lower standard deviation of 0.8 km/h. The analysis methods presented here will help to establish routines for near real-time train tracking and train integrity analysis.
Journal Article
The break of earthquake asperities imaged by distributed acoustic sensing
2023
Rupture imaging of megathrust earthquakes with global seismic arrays revealed frequency-dependent rupture signatures
1
–
4
, but the role of high-frequency radiators remains unclear
3
–
5
. Similar observations of the more abundant crustal earthquakes could provide critical constraints but are rare without ultradense local arrays
6
,
7
. Here we use distributed acoustic sensing technology
8
,
9
to image the high-frequency earthquake rupture radiators. By converting a 100-kilometre dark-fibre cable into a 10,000-channel seismic array, we image four high-frequency subevents for the 2021 Antelope Valley, California, moment-magnitude 6.0 earthquake. After comparing our results with long-period moment-release
10
,
11
and dynamic rupture simulations, we suggest that the imaged subevents are due to the breaking of fault asperities—stronger spots or pins on the fault—that substantially modulate the overall rupture behaviour. An otherwise fading rupture propagation could be promoted by the breaking of fault asperities in a cascading sequence. This study highlights how we can use the extensive pre-existing fibre networks
12
as high-frequency seismic antennas to systematically investigate the rupture process of regional moderate-sized earthquakes. Coupled with dynamic rupture modelling, it could improve our understanding of earthquake rupture dynamics.
Distributed acoustic sensing technology is utilized to image four high-frequency rupture subevents of the 2021 Antelope Valley, California, earthquake; the results indicate that the subevents are due to the breaking of fault asperities.
Journal Article
S/P Amplitude Ratios With Distributed Acoustic Sensing and Application to Earthquake Focal Mechanisms
by
Hardebeck, Jeanne L
,
Skoumal, Robert J
,
Atterholt, James
in
Acoustic imagery
,
Acoustics
,
Amplitude
2025
Distributed acoustic sensing (DAS), which transforms a fiber optic cable into an array of high frequency strainmeters, has the potential to help us characterize earthquakes with a dense sampling of measurements. While earthquake focal mechanisms are frequently determined using P‐wave polarities and S/P amplitude ratios with inertial seismometers, the dense sampling of DAS over potentially large portions of the focal sphere can aid our solutions. Here, we consider ∼200 regional earthquakes and thousands of S/P measurements on a DAS cable colocated with a network of inertial seismometers near Arcata, California. We demonstrate the S/P ratio measurements made on DAS are similar to those made on the inertial seismometers and can be used to constrain focal mechanism solutions.
Journal Article
Recent Advances in Phase-Sensitive Optical Time Domain Reflectometry (Ф-OTDR)
2021
Phase-sensitive optical time domain reflectometry (Ф-OTDR) is an effective way to detect vibrations and acoustic waves with high sensitivity, by interrogating coherent Rayleigh backscattering light in sensing fiber. In particular, fiber-optic distributed acoustic sensing (DAS) based on the Ф-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection, borehole seismic acquisition, structure health monitoring, etc., in recent years, with superior advantages such as long sensing range, fast response speed, wide sensing bandwidth, low operation cost and long service lifetime. Significant advances in research and development (R&D) of Ф-OTDR have been made since 2014. In this review, we present a historical review of Ф-OTDR and then summarize the recent progress of Ф-OTDR in the Fiber Optics Research Center (FORC) at University of Electronic Science and Technology of China (UESTC), which is the first group to carry out R&D of Ф-OTDR and invent ultra-sensitive DAS (uDAS) seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019. It can be seen that the Ф-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.
Journal Article