Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
345
result(s) for
"distribution system reconfiguration"
Sort by:
Enhancement of Hosting Capacity with Soft Open Points and Distribution System Reconfiguration: Multi-Objective Bilevel Stochastic Optimization
by
Zobaa, Ahmed F.
,
Abdel Aleem, Shady H. E.
,
Diaaeldin, Ibrahim Mohamed
in
active distribution networks
,
Algorithms
,
Case studies
2020
Soft open points (SOPs) are power electronic devices that replace the normal open points in active distribution systems. They provide resiliency in terms of transferring electrical power between adjacent feeders and delivering the benefits of meshed networks. In this work, a multi-objective bilevel optimization problem is formulated to maximize the hosting capacity (HC) of a real 59-node distribution system in Egypt and an 83-node distribution system in Taiwan, using distribution system reconfiguration (DSR) and SOP placement. Furthermore, the uncertainty in the load is considered to step on the real benefits of allocating SOPs along with DSR. The obtained results validate the effectiveness of DSR and SOP allocation in maximizing the HC of the studied distribution systems with low cost.
Journal Article
Power System Reconfiguration in Distribution System for Loss Minimization Using Optimization Techniques: A Review
by
Ushashree, Puttamsetty
,
Kumar, K. Sathish
in
Algorithms
,
Communications Engineering
,
Computer Communication Networks
2023
Normally consumers faced so many power interruption problems in the power distribution network. The distribution network is interrupted because of the power loss problems occurs in the power system. Network Reconfiguration (NR) is one of the major approaches for loss minimization to satisfy the customers demand by modifying the structure of distribution network. The main aim of the NR is to attain a radial network that optimizes the losses in the network and some other various techniques are utilized. In literature, various algorithms have been determined for network reconfiguration problems. In past years, the reliability in distribution network has been developed for uninterrupted power supply to the consumers. It presents a classical introduction, bibliographical review, and related analysis of methods utilized for reconfiguration of the system for loss reduction so that the scholars can quickly analyze the literature, particularly in this field. The current review mainly focusing on the conventional, novel techniques, optimization algorithms for reconfiguration and optimal allocation of distributed generation plays a significant part in enhancing the efficiency and precision of the results.
Journal Article
Integrated data-driven topology reconstruction and risk-aware reconfiguration for resilient power distribution systems under incomplete observability
2025
This paper proposes a unified data-driven framework for topology identification, risk quantification, and reconfiguration optimization in power distribution networks under incomplete and fragmented observability. Motivated by real-world challenges where asset metadata, SCADA records, GIS layouts, and dispatcher logs are misaligned or incomplete, the proposed approach reconstructs network topology using a graph convolutional network (GCN) that fuses heterogeneous data attributes and learns structural representations from partial connectivity information. On the inferred topology, a scenario-based risk evaluation model is formulated to capture both local fragility and spatial risk propagation, integrating factors such as load stress, asset aging, and nodal redundancy into a unified zone-level risk index. To mitigate this risk, a bilevel reconfiguration optimization model is developed, in which the upper level minimizes cumulative risk and switching cost while maximizing load restoration, and the lower level enforces electrical feasibility under contingency-aware constraints. The full pipeline is tested on a 58-node synthetic distribution system with embedded DERs, showcasing the ability of the framework to reduce peak nodal risk by 52.7%, restore over 94% of total demand in 90% of scenarios, and maintain tractable computation times under 9 mins per scenario across 100 fault cases. A suite of detailed visualizations–including confidence-based topology maps, switching heatmaps, congestion-weighted flow diagrams, and fairness-control tradeoff surfaces–demonstrates the interpretability and operational relevance of the results. The proposed framework offers a scalable, adaptive solution for resilient distribution network management under uncertainty and fragmented digital infrastructure.
Journal Article
Resilient Distribution System Reconfiguration Based on Genetic Algorithms Considering Load Margin and Contingencies
2025
This paper addresses the challenge of restoring electrical service in distribution systems (DS) under contingency scenarios using a genetic algorithm (GA) implemented in MATLAB. The proposed methodology seeks to maximize restored load, considering operational constraints such as line loadability, voltage limits, and radial topology preservation. It is evaluated with simulations on the IEEE 34-bus test system under four contingency scenarios that consider the disconnection of specific branches. The algorithm’s ability to restore service is demonstrated by identifying optimal auxiliary line reconnections. The method maximizes restored load, achieving between 97% and 99% load reconnection, with an average of 98.8% across the four cases analyzed. Bus voltages remain above 0.95 pu and below the upper limit. Furthermore, test feeder results demonstrate that line loadability is mostly below 60% of the post-reconfiguration loadability.
Journal Article
Resilience-oriented intentional islanding of reconfigurable distribution power systems
by
OBOUDI, Mohammad Hossein
,
RASTEGAR, Mohammad
,
MOHAMMADI, Mohammad
in
Active distribution system
,
Algorithms
,
Demand side management
2019
Participation of distributed energy resources in the load restoration procedure, known as intentional islanding, can significantly improve the distribution system reliability. Distribution system reconfiguration can effectively alter islanding procedure and thus provide an opportunity to supply more demanded energy and reduce distribution system losses. In addition, high-impact events such as hurricanes and earthquake may complicate the procedure of load restoration, due to disconnection of the distribution system from the upstream grid or concurrent component outages. This paper presents a two-level method for intentional islanding of a reconfigurable distribution system, considering high impact events. In the first level, optimal islands are selected according to the graph model of the distribution system. In the second level, an optimal power flow (OPF) problem is solved to meet the operation constraints of the islands by reactive power control and demand side management. The proposed problem in the first level is solved by a combination of depth first search and particle swarm optimization methods. The OPF problem in the second level is solved in DIgSILENT software. The proposed method is implemented in the IEEE 69-bus test system, and the results show the validity and effectiveness of the proposed algorithm.
Journal Article
Planning for Medium- and Heavy-Duty Electric Vehicle Charging Infrastructure in Distribution Networks to Support Long-Range Electric Trucks
by
Then, Joshua
,
Muttaqi, Kashem M.
,
Agalgaonkar, Ashish P.
in
Costs
,
demand-side management
,
distributed generation
2025
Electrification of the transport sector introduces operational issues in the electricity distribution network, such as excessive voltage deviation, substation overloading, and adverse power quality impacts on other network loads. These concerns are expected to grow as electrification expands to incorporate heavy vehicles such as trucks and buses due to their greater energy requirements and higher charging loads. Two strategies are proposed to support medium- and heavy-duty chargers which address their high power demand and mitigate power quality disturbances and the overloading of substations. The first is a dedicated feeder connected at the secondary of the substation directly to the charging station which aims to reduce the impact of high load on other customers. The second is the addition of a dedicated substation that solely provides power for charging stations in major corridors, alleviating stress on existing zone substations. Hosting capacity is measured using a voltage deviation index, describing the deviation in line voltage, which should experience a sag of no more than 6% of the nominal voltage, and a substation charging capacity index, describing the available capacity of each zone substation as a ratio of its total power capacity. Verification of the proposed strategies was performed on an MV-LV distribution network representative of an industrial Australian town with heavy-vehicle charging. Results showed that the network could handle ten 250 kW chargers, which was tripled to 35 with a dedicated feeder. The dedicated feeder alternatively allowed up to 10 megawatt-scale chargers, which was again tripled when a dedicated substation was introduced.
Journal Article
Sensitivity Analysis of Distribution Network Reconfiguration Optimization for Electric Vehicle and Renewable Distributed Generator Integration
2025
Distribution networks have faced significant efficiency and reliability challenges, balancing the recent integration of electric vehicles (EVs) and renewable distributed generators (DGs). This study proposes a reconfiguration optimization of the distribution system by adjusting the status of switches within the network. This approach aims to minimize power losses and enhance overall operational efficiency. To model the variability of wind and solar DGs, probability distribution functions (PDFs) are employed, which allow for a more accurate representation of their performance. Additionally, stochastic models and Monte Carlo Simulation (MCS) are utilized to generate various scenarios that reflect real-world conditions, including the charging and discharging behaviors of EVs. A sensitivity analysis is conducted to evaluate the effectiveness of our proposed reconfiguration strategy across different levels of EV and DG penetration.
Journal Article
Impact of Distributed Generation on the Effectiveness of Electric Distribution System Reconfiguration
by
Carreño-Franco, Edgar Manuel
,
Gonçalves-Leite, Matheus Diniz
,
López-Lezama, Jesús M.
in
active power losses
,
Alternative energy
,
distributed generation
2023
Distribution system reconfiguration (DSR) is an essential activity in the operation of distribution utilities, usually carried out to lower active power losses and improve reliability metrics. The insertion of distributed generation (DG) units in electric power distribution systems (EPDS) causes the rearrangement of power flows through the conductors and changes the real power losses and voltage profile; therefore, up to a certain point, the insertion of certain quantities of DG may potentially delay or change the reconfiguration strategy of EPDS. This article presents an analysis of the impact of DG, for different locations of the units and different levels of active power supplied by them, on real power losses and on the effectiveness of DSR. The article presents tests with different distribution systems with varying sizes and topologies, showing that the allocation of DG units in buses far from the substation provided the best cost–benefit results. The DSR impact changes depending on the installment location and the generation level of the DG units, corroborating that DSR must be considered and performed using certain criteria, to maximize its efficiency.
Journal Article
An Innovative Approach to Radiality Representation in Electrical Distribution System Reconfiguration: Enhanced Efficiency and Computational Performance
by
Tabares Pozos, Alejandra
,
Álvarez-Martínez, David
,
Cortés Sanabria, Pablo José
in
Artificial intelligence
,
computational efficiency
,
Efficiency
2024
The reconfiguration problem (DPSR) in electrical distribution systems is a critical area of research, aimed at optimizing the operational efficiency of these networks. Historically, this problem has been approached through a variety of optimization methods. Regarding mathematical models, a key challenge identified in these models is the formulation of equations that ensure the radial operation of the system, along with the nonlinear equations representing Kirchhoff’s laws, the last often necessitating complex relaxations for practical application. This paper introduces an alternative representation of system radiality, which potentially surpasses or matches the existing methods in the literature. Our approach utilizes a more intuitive and compact set of equations, simplifying the representation process. Additionally, we propose a linearization of the current calculation in the power flow model typically used to solve DPSR. This linearization significantly accelerates the process of obtaining feasible solutions and optimal reconfiguration profiles. To validate our approach, we conducted rigorous computational comparisons with the results reported in the existing literature, using a variety of test cases to ensure robustness. Our computational results demonstrate a considerable improvement in computational time. The objective functions used are competitive and, in many instances, outperform the best reported results in the literature. In some cases, our method even identifies superior solutions.
Journal Article
A Reliability-Based Network Reconfiguration Model in Distribution System with DGs and ESSs Using Mixed-Integer Programming
by
Guo, Shanghua
,
Wang, Longjun
,
Zhao, Yuming
in
Algorithms
,
Case studies
,
customer interruption duration
2020
Widely used distribution generations (DGs) and energy storage systems (ESSs) enable a distribution system to have a more flexible fault reconfiguration capability. In order to enhance the service reliability and the benefit of distribution networks with DGs and ESSs, this paper proposes a novel distribution system reconfiguration (DSR) model including DGs and ESSs. Meanwhile, the impact of sectionalizing switches and tie switches on reliability is considered. The concept of “boundary switch” is introduced for quantifying the customer interruption duration. The DSR model is presented to minimize the sum of the customer interruption cost, the operation cost of switches, and the depreciation cost of DGs and ESSs. Furthermore, the proposed model is converted into a mixed-integer linear programming, which can be efficiently solved by commercial solvers. Finally, the validity and efficiency of the proposed DSR model are verified by a modified IEEE 33-bus system and a modified PG&E69-bus network. The obtained results indicate the advantages of DGs and ESSs in reducing outage time, and suggest that the types and locations of SSs have great effects on the resulting benefit of DGs and ESSs.
Journal Article