Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
135
result(s) for
"divergence-time estimation"
Sort by:
Constructing a broadly inclusive seed plant phylogeny
2018
Premise of the Study Large phylogenies can help shed light on macroevolutionary patterns that inform our understanding of fundamental processes that shape the tree of life. These phylogenies also serve as tools that facilitate other systematic, evolutionary, and ecological analyses. Here we combine genetic data from public repositories (GenBank) with phylogenetic data (Open Tree of Life project) to construct a dated phylogeny for seed plants. Methods We conducted a hierarchical clustering analysis of publicly available molecular data for major clades within the Spermatophyta. We constructed phylogenies of major clades, estimated divergence times, and incorporated data from the Open Tree of Life project, resulting in a seed plant phylogeny. We estimated diversification rates, excluding those taxa without molecular data. We also summarized topological uncertainty and data overlap for each major clade. Key Results The trees constructed for Spermatophyta consisted of 79,881 and 353,185 terminal taxa; the latter included the Open Tree of Life taxa for which we could not include molecular data from GenBank. The diversification analyses demonstrated nested patterns of rate shifts throughout the phylogeny. Data overlap and inference uncertainty show significant variation throughout and demonstrate the continued need for data collection across seed plants. Conclusions This study demonstrates a means for combining available resources to construct a dated phylogeny for plants. However, this approach is an early step and more developments are needed to add data, better incorporating underlying uncertainty, and improve resolution. The methods discussed here can also be applied to other major clades in the tree of life.
Journal Article
Rates and Patterns in the Evolution of Snake-Like Body Form in Squamate Reptiles: Evidence for Repeated Re-Evolution of Lost Digits and Long-Term Persistence of Intermediate Body Forms
by
Wiens, John J.
,
Brandley, Matthew C.
,
Huelsenbeck, John P.
in
Algorithms
,
Ancestral state reconstruction
,
Animals
2008
An important challenge in evolutionary biology is to understand how major changes in body form arise. The dramatic transition from a lizard-like to snake-like body form in squamate reptiles offers an exciting system for such research because this change is replicated dozens of times. Here, we use morphometric data for 258 species and a time-calibrated phylogeny to explore rates and patterns of body-form evolution across squamates. We also demonstrate how time-calibrated phylogenies may be used to make inferences about the time frame over which major morphological transitions occur. Using the morphometric data, we find that the transition from lizard-like to snake-like body form involves concerted evolution of limb reduction, digit loss, and body elongation. These correlations are similar across squamate clades, despite very different ecologies and >180 million years (My) of divergence. Using the time-calibrated phylogeny and ancestral reconstructions, we find that the dramatic transition between these body forms can occur in 20 My or less, but that seemingly intermediate morphologies can also persist for tens of millions of years. Finally, although loss of digits is common, we find statistically significant support for at least six examples of the re-evolution of lost digits in the forelimb and hind limb.
Journal Article
Direct long-distance dispersal best explains the bipolar distribution of Carex arctogena (Carex sect. Capituligerae, Cyperaceae)
by
Starr, Julian R.
,
Martín-Bravo, Santiago
,
Villaverde, Tamara
in
Arctic region
,
Bayesian theory
,
Bioclimatology
2015
Aim: The bipolar disjunction, a biogeographical pattern defined by taxa with a distribution at very high latitudes in both hemispheres (> 55° N; > 52° S), is only known to occur in about 30 vascular plant species. Our aim was to use the bipolar species Carex arctogena to test the four classic hypotheses proposed to explain this exceptional disjunction: convergent evolution, vicariance, mountain-hopping and direct long-distance dispersal. Location: Arctic/boreal and temperate latitudes of both hemispheres. Methods: A combination of molecular and bioclimatic data was used to test phylogeographical hypotheses in C. arctogena. Three chloroplast markers (atpF–atpH, matK and rps16) and the nuclear ITS region were sequenced for all species in Carex sections Capituligerae and Longespicatae; Carex rupestris, C. obtusata and Uncinia triquetra were used as outrgroups. Phylogenetic relationships, divergence-time estimates and biogeographical patterns were inferred using maximum likelihood, statistical parsimony and Bayesian inference. Results: Carex sections Capituligerae and Longespicatae formed a monophyletic group that diverged during the late Miocene. Two main lineages of arctogena were inferred. Southern Hemisphere populations of C. arctogena shared the same haplotype as a widespread circumboreal lineage. Bioclimatic data show that Southern and Northern Hemisphere populations currently differ in their ecological regimes. Main conclusions: Two of the four hypotheses accounting for bipolar disjunctions may be rejected. Our results suggest that direct long-distance dispersal, probably southwards and mediated by birds, best explains the bipolar distribution of C. arctogena.
Journal Article
A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins
2021
Living turtles are characterized by extraordinarily low species diversity given their age. The clade’s extensive fossil record indicates that climate and biogeography may have played important roles in determining their diversity. We investigated this hypothesis by collecting a molecular dataset for 591 individual turtles that, together, represent 80% of all turtle species, including representatives of all families and 98% of genera, and used it to jointly estimate phylogeny and divergence times. We found that the turtle tree is characterized by relatively constant diversification (speciation minus extinction) punctuated by a single threefold increase. We also found that this shift is temporally and geographically associated with newly emerged continental margins that appeared during the Eocene–Oligocene transition about 30 million years before present. In apparent contrast, the fossil record from this time period contains evidence for a major, but regional, extinction event. These seemingly discordant findings appear to be driven by a common global process: global cooling and drying at the time of the Eocene–Oligocene transition. This climatic shift led to aridification that drove extinctions in important fossilbearing areas, while simultaneously exposing new continental margin habitat that subsequently allowed for a burst of speciation associated with these newly exploitable ecological opportunities.
Journal Article
The fossilized birth—death process for coherent calibration of divergence-time estimates
2014
Divergence time estimation on an absolute timescale requires external calibration information, which typically is derived from the fossil record. The common practice in Bayesian divergence time estimation involves applying calibration densities to individual nodes. Often, these priors are arbitrarily chosen and specified yet have an excessive impact on estimates of absolute time. We introduce the fossilized birth–death process—a fossil calibration method that unifies extinct and extant species with a single macroevolutionary model, eliminating the need for ad hoc calibration priors. Compared with common calibration density approaches, Bayesian inference under this mechanistic model yields more accurate node age estimates while providing a coherent measure of statistical uncertainty. Furthermore, unlike calibration densities, our model accommodates all the reliable fossils for a given phylogenetic dataset. Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene.
Journal Article
Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution
2016
Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae.
Journal Article
Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty
by
Freyman, William A.
,
Baldwin, Bruce G.
,
Landis, Michael J.
in
Adaptive radiation
,
Archipelagoes
,
Bayesian analysis
2018
The Hawaiian silversword alliance (Asteraceae) is an iconic adaptive radiation. However, like many island plant lineages, no fossils have been assigned to the clade. As a result, the clade’s age and diversification rate are not known precisely, making it difficult to test biogeographic hypotheses about the radiation. In lieu of fossils, paleogeographically structured biogeographic processes may inform species divergence times; for example, an island must first exist for a clade to radiate upon it. We date the silversword clade and test biogeographic hypotheses about its radiation across the Hawaiian Archipelago by modeling interactions between species relationships, molecular evolution, biogeographic scenarios, divergence times, and island origination times using the Bayesian phylogenetic framework, RevBayes. The ancestor of living silverswords most likely colonized the modern Hawaiian Islands once from the mainland approximately 5.1 Ma, with the most recent common ancestor of extant silversword lineages first appearing approximately 3.5 Ma. Applying an event-based test of the progression rule of island biogeography, we found strong evidence that the dispersal process favors old-to-young directionality, but strong evidence for diversification continuing unabated into later phases of island ontogeny, particularly for Kaua‘i. This work serves as a general example for how diversification studies benefit from incorporating biogeographic and paleogeographic components.
Journal Article
Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics
2016
Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae–Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity.
Journal Article
The Effect of Fossil Sampling on the Estimation of Divergence Times with the Fossilized Birth–Death Process
by
O’Reilly, Joseph E.
,
Donoghue, Philip C. J.
in
Biological Evolution
,
Classification - methods
,
Developmental biology
2020
Timescales are of fundamental importance to evolutionary biology as they facilitate hypothesis tests of historical evolutionary processes. Through the incorporation of fossil occurrence data, the fossilized birth–death (FBD) process provides a framework for estimating divergence times using more paleontological data than traditional node calibration approaches have allowed. The inclusion of more data can refine evolutionary timescale estimates, but for many taxonomic groups it is computationally infeasible to include all available fossil occurrence data. Here, we utilize both empirical data and a simulation framework to identify approaches to subsampling fossil occurrence data that result in the most accurate estimates of divergence times. To achieve this we assess the performance of the FBD-Skyline model when implementing multiple approaches to incorporating subsampled fossil occurrence data. Our results demonstrate that it is necessary to account for all available fossil occurrence data to achieve the most accurate estimates of clade age. We show that this can be achieved if an empirical Bayes approach, accounting for fossil sampling through time, is applied to the FBD process. Random subsampling of occurrence data can lead to estimates of clade age that are incompatible with fossil evidence if no control over the affinities of fossil occurrences is enforced. Our results call into question the accuracy of previous divergence time studies incorporating the FBD process that have used only a subsample of all available fossil occurrence data.
Journal Article
The Efficacy of Consensus Tree Methods for Summarizing Phylogenetic Relationships from a Posterior Sample of Trees Estimated from Morphological Data
by
O’Reilly, Joseph E.
,
Donoghue, Philip C. J.
in
Algorithms
,
Bayesian analysis
,
Classification - methods
2018
Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data.
Journal Article