Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "diverging parameters"
Sort by:
Nonconcave Penalized Likelihood with a Diverging Number of Parameters
A class of variable selection procedures for parametric models via non-concave penalized likelihood was proposed by Fan and Li to simultaneously estimate parameters and select important variables. They demonstrated that this class of procedures has an oracle property when the number of parameters is finite. However, in most model selection problems the number of parameters should be large and grow with the sample size. In this paper some asymptotic properties of the nonconcave penalized likelihood are established for situations in which the number of parameters tends to ∞ as the sample size increases. Under regularity conditions we have established an oracle property and the asymptotic normality of the penalized likelihood estimators. Furthermore, the consistency of the sandwich formula of the covariance matrix is demonstrated. Nonconcave penalized likelihood ratio statistics are discussed, and their asymptotic distributions under the null hypothesis are obtained by imposing some mild conditions on the penalty functions. The asymptotic results are augmented by a simulation study, and the newly developed methodology is illustrated by an analysis of a court case on the sexual discrimination of salary.
Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates
The paper develops an innovatively adaptive bi-level variable selection methodology for quantile regression models with a diverging number of covariates. Traditional variable selection techniques in quantile regression, such as the lasso and group lasso techniques, offer solutions predominantly for either individual variable selection or group-level selection, but not for both simultaneously. To address this limitation, we introduce an adaptive group bridge approach for quantile regression, to simultaneously select variables at both the group and within-group variable levels. The proposed method offers several notable advantages. Firstly, it adeptly handles the heterogeneous and/or skewed data inherent to quantile regression. Secondly, it is capable of handling quantile regression models where the number of parameters grows with the sample size. Thirdly, via employing an ingeniously designed penalty function, our method surpasses traditional group bridge estimation techniques in identifying important within-group variables with high precision. Fourthly, it exhibits the oracle group selection property, implying that the relevant variables at both the group and within-group levels can be identified with a probability converging to one. Several numerical studies corroborated our theoretical results.
VARIABLE SELECTION FOR HIGH-DIMENSIONAL GENERALIZED VARYING-COEFFICIENT MODELS
In this paper, we consider the problem of variable selection for highdimensional generalized varying-coefficient models and propose a polynomial-spline based procedure that simultaneously eliminates irrelevant predictors and estimates the nonzero coefficients. In a \"large p, small n\" setting, we demonstrate the convergence rates of the estimator under suitable regularity assumptions. In particular, we show the adaptive group lasso estimator can correctly select important variables with probability approaching one and the convergence rates for the nonzero coefficients are the same as the oracle estimator (the estimator when the important variables are known before carrying out statistical analysis). To automatically choose the regularization parameters, we use the extended Bayesian information criterion (eBIC) that effectively controls the number of false positives. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed procedures.
ASYMPTOTIC PROPERTIES OF SUFFICIENT DIMENSION REDUCTION WITH A DIVERGING NUMBER OF PREDICTORS
We investigate asymptotic properties of a family of sufficient dimension reduction estimators when the number of predictors p diverges to infinity with the sample size. We adopt a general formulation of dimension reduction estimation through least squares regression of a set of transformations of the response. This formulation allows us to establish the consistency of reduction projection estimation. We then introduce the SCAD max penalty, along with a difference convex optimization algorithm, to achieve variable selection. We show that the penalized estimator selects all truly relevant predictors and excludes all irrelevant ones with probability approaching one, meanwhile it maintains consistent reduction basis estimation for relevant predictors. Our work differs from most model-based selection methods in that it does not require a traditional model, and it extends existing sufficient dimension reduction and model-free variable selection approaches from the fixed p scenario to a diverging p.
SURROGATE DIMENSION REDUCTION IN MEASUREMENT ERROR REGRESSIONS
We generalize the cumulative slicing estimator to dimension reduction where the predictors are subject to measurement errors. Unlike existing methodologies, our proposal involves neither nonparametric smoothing in estimation nor normality assumption on the predictors or measurement errors. We establish strong consistency and asymptotic normality of the resultant estimators, allowing that the predictor dimension diverges with the sample size. Comprehensive simulations have been carried out to evaluate the performance of our proposal and to compare it with existing methods. A dataset is analyzed to further illustrate the proposed methodology.
Shrinkage tuning parameter selection with a diverging number of parameters
Contemporary statistical research frequently deals with problems involving a diverging number of parameters. For those problems, various shrinkage methods (e.g. the lasso and smoothly clipped absolute deviation) are found to be particularly useful for variable selection. Nevertheless, the desirable performances of those shrinkage methods heavily hinge on an appropriate selection of the tuning parameters. With a fixed predictor dimension, Wang and co-worker have demonstrated that the tuning parameters selected by a Bayesian information criterion type criterion can identify the true model consistently. In this work, similar results are further extended to the situation with a diverging number of parameters for both unpenalized and penalized estimators. Consequently, our theoretical results further enlarge not only the scope of applicabilityation criterion type criteria but also that of those shrinkage estimation methods.
Penalized Generalized Estimating Equations for High‐Dimensional Longitudinal Data Analysis
We consider the penalized generalized estimating equations (GEEs) for analyzing longitudinal data with high‐dimensional covariates, which often arise in microarray experiments and large‐scale health studies. Existing high‐dimensional regression procedures often assume independent data and rely on the likelihood function. Construction of a feasible joint likelihood function for high‐dimensional longitudinal data is challenging, particularly for correlated discrete outcome data. The penalized GEE procedure only requires specifying the first two marginal moments and a working correlation structure. We establish the asymptotic theory in a high‐dimensional framework where the number of covariates pn increases as the number of clusters n increases, and pn can reach the same order as n. One important feature of the new procedure is that the consistency of model selection holds even if the working correlation structure is misspecified. We evaluate the performance of the proposed method using Monte Carlo simulations and demonstrate its application using a yeast cell‐cycle gene expression data set.
Variable selection for case-cohort studies with failure time outcome
Case-cohort designs are widely used in large cohort studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large, so an efficient variable selection method is necessary. In this paper, we study the properties of a variable selection procedure using the smoothly clipped absolute deviation penalty in a case-cohort design with a diverging number of parameters. We establish the consistency and asymptotic normality of the maximum penalized pseudo-partial-likelihood estimator, and show that the proposed variable selection method is consistent and has an asymptotic oracle property. Simulation studies compare the finite-sample performance of the procedure with tuning parameter selection methods based on the Akaike information criterion and the Bayesian information criterion. We make recommendations for use of the proposed procedures in case-cohort studies, and apply them to the Busselton Health Study.
MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS
High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases.We propose the penalized quadratic inference function to perform model selection and estimation simultaneously in the framework of a diverging number of regression parameters. The penalized quadratic inference function can easily take correlation information from clustered data into account, yet it does not require specifying the likelihood function. This is advantageous compared to existing model selection methods for discrete data with large cluster size. In addition, the proposed approach enjoys the oracle property; it is able to identify non-zero components consistently with probability tending to 1, and any finite linear combination of the estimated non-zero components has an asymptotic normal distribution. We propose an efficient algorithm by selecting an effective tuning parameter to solve the penalized quadratic inference function. Monte Carlo simulation studies have the proposed method selecting the correct model with a high frequency and estimating covariate effects accurately even when the dimension of parameters is high. We illustrate the proposed approach by analyzing periodontal disease data.
Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters
Regularized variable selection is a powerful tool for identifying the true regression model from a large number of candidates by applying penalties to the objective functions. The penalty functions typically involve a tuning parameter that controls the complexity of the selected model. The ability of the regularized variable selection methods to identify the true model critically depends on the correct choice of the tuning parameter. In this study, we develop a consistent tuning parameter selection method for regularized Cox’s proportional hazards model with a diverging number of parameters. The tuning parameter is selected by minimizing the generalized information criterion. We prove that, for any penalty that possesses the oracle property, the proposed tuning parameter selection method identifies the true model with probability approaching one as sample size increases. Its finite sample performance is evaluated by simulations. Its practical use is demonstrated in The Cancer Genome Atlas breast cancer data.