Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,323 result(s) for "diversity parameters"
Sort by:
MIMO Antennas: Design Approaches, Techniques and Applications
The excessive use of digital platforms with rapidly increasing users in the wireless domain enforces communication systems to provide information with high data rates, high reliability and strong transmission connection quality. Wireless systems with single antenna elements are not able to accomplish the desired needs. Therefore, multiple-input multiple-output (MIMO) antennas are getting more attention in modern high-speed communication systems and play an essential part in the current generation of wireless technology. However, along with their ability to significantly increase channel capacity, it is a challenge to achieve an optimal isolation in a compact size for fifth-generation (5G) terminals. Portable devices, automobiles, handheld gadgets, smart phones, wireless sensors, radio frequency identification and other applications use MIMO antenna systems. In this review paper, the fundamentals of MIMO antennas, the performance parameters of MIMO antennas, and different design approaches and methodologies are discussed to realize the three most commonly used MIMO antennas, i.e., ultra-wideband (UWB), dual-band and circularly polarized antennas. The recent MIMO antenna design approaches with UWB, dual band and circularly polarized characteristics are compared in terms of their isolation techniques, gain, efficiency, envelope correlation coefficient (ECC) and channel capacity loss (CCL). This paper is very helpful to design suitable MIMO antennas applicable in UWB systems, satellite communication systems, GSM, Bluetooth, WiMAX, WLAN and many more. The issues with MIMO antenna systems in the indoor environment along with possible solutions to improve their performance are discussed. The paper also focuses on the applications of MIMO characteristics for future sixth-generation (6G) technology.
Comparison of different methods for diversity ordering
The measurement of diversity, one of the most important concepts in present-day ecology, can be improved by methods of diversity ordering which have recently been developed. This ordering is achieved by a D(α) diversity index family. Indices of this family show varying sensitivities to the rare and abundant species as the scale parameter, α, changes. The aim of this paper is to review and assess 12 methods of diversity ordering and discuss their relationships in detail. Two of the methods are new to the ecological literature. The diversity ordering methods are compared as to their effectiveness in graphically displaying the differences of community structure and demonstrating the (non-)comparability of communities. Small, medium and large data sets were used to evaluate the methods. A small artificial data set (five to seven species) and a large semi-artificial data set (31 - 141 species) are used in this paper. The results suggest that Rényi's diversity index family and Logarithmic dominance ordering are the most useful methods for diversity ordering of communities of all sizes. Right-tail-sum diversity ordering performs well for small communities.
Quad-Band 1 × 4 Linear MIMO Antenna for Millimeter-Wave, Wearable and Biomedical Telemetry Applications
In this paper, we present the design of a millimeter-wave 1 × 4 linear MIMO array antenna that operates across multiple resonance frequency bands: 26.28–27.36 GHz, 27.94–28.62 GHz, 32.33–33.08 GHz, and 37.59–39.47 GHz, for mm-wave wearable biomedical telemetry application. The antenna is printed on a flexible substrate with dimensions of 11.0 × 44.0 mm2. Each MIMO antenna element features a modified slot-loaded triangular patch, incorporating ‘cross’-shaped slots in the ground plane to improve impedance matching. The MIMO antenna demonstrates peak gains of 6.12, 8.06, 5.58, and 8.58 dBi at the four resonance frequencies, along with a total radiation efficiency exceeding 75%. The proposed antenna demonstrates excellent diversity metrics, with an ECC < 0.02, DG > 9.97 dB, and CCL below 0.31 bits/sec/Hz, indicating high performance for mm-wave applications. To verify its properties under flexible conditions, a bending analysis was conducted, showing stable S-parameter results with deformation radii of 40 mm (Rx) and 25 mm (Ry). SAR values for the MIMO antenna are calculated at 28.0/38.0 GHz. The average SAR values for 1 gm/10 gm of tissues at 28.0 GHz are found to be 0.0125/0.0079 W/Kg, whereas, at 38.0 GHz, average SAR values are 0.0189/0.0094 W/Kg, respectively. Additionally, to demonstrate the telemetry range of biomedical applications, a link budget analysis at both 28.0 GHz and 38.0 GHz frequencies indicated strong signal strength of 33.69 dB up to 70 m. The fabricated linear MIMO antenna effectively covers the mm-wave 5G spectrum and is suitable for wearable and biomedical applications due to its flexible characteristics.
Self-Isolated Dual-Band MIMO Antenna for Improved Diversity in ISM Band and Wireless Applications
In this article, a self-isolated dual-band MIMO antenna for improved diversity in ISM and wireless applications is proposed. An orthogonally structured dual-port MIMO antenna, incorporating a meander line patch, is introduced. The antenna is constructed on an FR4 substrate with overall dimensions of 0.272 0.56 0.0128 at 2.4 GHz. It resonates at dual bands, 2.40 GHz and 3.73 GHz, catering to ISM and C-band applications. The orthogonal orientation enhances isolation between the antenna elements, achieving a self-isolation level of – 18 dB. To evaluate the antenna's diversity capabilities, MIMO performance parameters such as diversity gain (DG) and envelope correlation coefficient (ECC) were calculated. The simulated results demonstrate excellent diversity performance, with an ECC of 0.01 and a DG of 9.989. Additionally, the antenna achieves an efficiency of over 85 %, with gains of 3.4 dBi for the ISM band and 4.1 dBi for the 5G C-band. With its compact dimensions, dual-band functionality, high isolation, and superior performance metrics, the proposed MIMO antenna stands out as a promising solution for next-generation dual-band wireless communication systems, particularly for ISM and 5G applications. Moreover, the measured and simulated radiation patterns exhibit stable directional patterns in the E-plane and consistent omnidirectional coverage in the H-plane, underscoring its reliability for real-world applications.
Characteristic Mode Analysis-Based Compact Dual Band-Notched UWB MIMO Antenna Loaded with Neutralization Line
The advancement of electronic gadgets makes it possible for a device to be multipurpose, which calls for attributes such as compactness and larger bandwidth, with improved data transfer rate. This paper introduces the compact, closely placed two-port dual band-notched UWB antenna using a neutralization line as a decoupling structure. The projected antenna design comprised a circle and rectangle embedded monopole radiator with the defected ground structure to attain the UWB spectrum. Further dual notches are attained by carving the U-shape and inverted U-shape slots on the feedline and radiator. The dual band-notched UWB antennas are placed with the separation of 3.8 mm (0.04 λ; λ is computed using 3.4 GHz frequency). The coupling effect between the close proximity elements is decoupled using the neutralization line. The presented antenna has overall dimensions of 21.5 × 28 × 1.6 mm3 (0.24 × 0.31 × 0.01 λ3) and exhibits S11 below −10 dB from 3.4–11.9 GHz, with isolation better than 16 dB throughout the impedance bandwidth. The antenna also provides frequency band rejection of 4.5–5.3 GHz and 7.2–9 GHz covering the WLAN and entire X-band satellite communication. The projected antenna is explored through characteristic mode analysis, time-domain characteristics, and MIMO diversity features to analyze the effectiveness and usefulness of the antenna. The group delay is less than 1 ns except for the frequency rejection band and fidelity factor greater than 0.96. The projected antenna exhibits MIMO diversity metrics ECC < 0.3, DG > 9.6 dB, MEG < −3 dB, TARC < −10 dB, CCL < 0.3 bps/Hz, and ME < −2 dB across the operational frequency, except for the notched bands. The designed two-port antenna is validated by printing on an FR4 substrate. The simulated and measured findings are in line with and appropriate for MIMO wireless applications.
Computer Modelling of Compact 28/38 GHz Dual-Band Antenna for Millimeter-Wave 5G Applications
A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed for millimeter-wave communication systems in this paper. The multiple-input-multiple-output (MIMO) antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back. The overall size of the four elements MIMO antenna is 2.24λ × 2.24λ (at 27.12 GHz). The prototype of four-element MIMO resonator is designed and printed using Rogers RT Duroid 5880 with εr = 2.2 and loss tangent = 0.0009 and having a thickness of 0.8 mm. It covers dual-band having a fractional bandwidth of 15.7% (27.12–31.34 GHz) and 4.2% (37.21–38.81 GHz) for millimeter-wave applications with a gain of more than 4 dBi at both bands. The proposed antenna analysis in terms of MIMO diversity parameters (Envelope Correlation Coefficient (ECC) and Diversity Gain (DG)) is also carried out. The experimental result in terms of reflection coefficient, radiation pattern, gain and MIMO diversity parameter correlates very well with the simulated ones that show the potential of the proposed design for MIMO applications at millimeter-wave frequencies.
Dual port UWB MIMO Dielectric Resonator Antenna (DRA) with Airplane Shaped Defective Ground Plane (DGS) with Improved Isolation Level
This article presents the design, development, and testing of a two-port microstrip-fed dielectric resonator antenna (DRA) with a defective ground structure (DGS) for future smart phones. The proposed DRA array is fabricated on an FR-4 substrate with dimensions of 23 × 54 × 1.57 mm³. The top layer of the substrate consists of two inverted L-shaped alumina dielectric resonators, energized by a pair of L-shaped microstrip feed lines. The bottom layer of the substrate features two airplane-shaped structures to form the reduced ground DGS. Initially, a single-input single-output (SISO) rectangular dielectric resonator (DR) made of alumina material is placed over the feed network. This is later modified into an inverted L-shaped DR to enhance the antenna’s bandwidth. Subsequently, a 2 × 2 array is devised from the proposed SISO, and two airplane-shaped DGS structures were introduced on the surface of the ground plane to achieve the desired impedance bandwidth of 6.3–12.6 GHz. This configuration provides a maximum gain of 4.5 dB at a frequency of 7.6 GHz with a high isolation value (S21 ≤ − 22.5 dB).The performance of the proposed DRA prototype in MIMO systems is validated by measuring various diversity parameters, such as a low envelope correlation coefficient (ECC), high diversity gain (DG), high mean effective gain (MEG), and better multiplexing efficiency, all within acceptable limits.
Smart Sensor Platform for MIMO Antennas with Gain and Isolation Enhancement Using Metamaterial
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed on an FR4 substrate (1.6 mm thick), the proposed antenna configurations include a base hexagonal patch, an orthogonally oriented two-element system (TEH_OC), and further enhanced variants employing metamaterial arrays as the superstrate and reflector (TEH_OC_MTS and TEH_OC_MTR). The metamaterial structures significantly suppress mutual coupling, yielding superior diversity parameters such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL). All configurations were fabricated and validated through comprehensive anechoic chamber measurements. The results demonstrate robust isolation and radiation performance across the 3 GHz and 5 GHz bands, making these antennas well-suited for deployment in compact, low-latency smart sensor networks operating in 5G and IoT environments.
Morphometric Characteristics and Genetic Issr Marker Variability in Rhodiola rosea L. (Crassulaceae) in Different Ecological and Geographic Conditions in the Altai Republic
Rhodiola rosea L. is a vulnerable species in the Altai Republic (AR) and Russia in general. For the first time on the territory of AR, studies of the adaptive capabilities of the species and genetic differentiation using ISSR markers were carried out in seven cenopopulations (CP) of R. rosea in 2018 and 2020. The research was founded on the notion of conducting a comparative analysis of the morphogenetic structure of Rhodiola rosea populations in various ecological and geographical conditions of AR. The aim of this work is to evaluate the variability of morphometric traits of sexually mature living female R. rosea plants and to conduct a comparative analysis of genetic variability in cenopopulations (CP) both under undisturbed conditions and under stressful conditions of anthropogenic impact (grazing). Of the 8 primers used, HB12 turned out to be the most informative. The percentage of polymorphic loci in the populations between 0 and 88%. Two populations, located in favorable conditions at relatively low absolute altitudes (2000 m above sea level) (masl) in the undisturbed habitats of the Katun and Altai reserves of AR, were characterized by higher polymorphism. The share of polymorphic loci reached 80%. According to the analysis of statistical data, the highest values of morphometric parameters of the aerial parts of R. rosea plants and the highest potential seed productivity were also recorded in these habitats. Representatives of two high-mountain CPs (2400–2500 masl) in the Sailyugemsky National Park (SNP) were characterized by the lowest genetic polymorphism. Their genetic structure is the most homogeneous, since we have not found polymorphic loci. Due to spatial isolation, these individuals are reliably genetically differentiated. In addition, individuals of one type were subjected to stressful anthropogenic impact (grazing). Therefore, the smallest sizes and lowest potential seed productivity were recorded. Our research shows that alpine populations of R. rosea in AR, under conditions of anthropogenic stress, need protection for their gene pool.
A Coarse-to-Fine Registration Strategy for Multi-Sensor Images with Large Resolution Differences
Automatic image registration for multi-sensors has always been an important task for remote sensing applications. However, registration for images with large resolution differences has not been fully considered. A coarse-to-fine registration strategy for images with large differences in resolution is presented. The strategy consists of three phases. First, the feature-base registration method is applied on the resampled sensed image and the reference image. Edge point features acquired from the edge strength map (ESM) of the images are used to pre-register two images quickly and robustly. Second, normalized mutual information-based registration is applied on the two images for more accurate transformation parameters. Third, the final transform parameters are acquired through direct registration between the original high- and low-resolution images. Ant colony optimization (ACO) for continuous domain is adopted to optimize the similarity metrics throughout the three phases. The proposed method has been tested on image pairs with different resolution ratios from different sensors, including satellite and aerial sensors. Control points (CPs) extracted from the images are used to calculate the registration accuracy of the proposed method and other state-of-the-art methods. The feature-based preregistration validation experiment shows that the proposed method effectively narrows the value range of registration parameters. The registration results indicate that the proposed method performs the best and achieves sub-pixel registration accuracy of images with resolution differences from 1 to 50 times.